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Abstract

In the paper-container industry, bag stacking amnd u

stacking is labor-intensive work. It is hard fomgomanies to
find enough people to fill these positions. Aldwe tepetitive
stack and un-stack work can easily cause back aaidtw
injuries. Therefore, a robotic de-palletizing systes highly
desirable. Guiding a robot tool reliably and robust order
to insert into the gap in the bag stack to pickaulayer of
bags without disturbing the stack is highly chaljieny due
to the variation of the gap-center position and gjap under
varying pressure depending upon the number of $agleove
it, the so-called “variable crunch” factor. In ghstudy, a

method combining an uncalibrated vision and 3D rlase

assisted image analysis based on camera-spaceutaaioip
(CSM) was developed. The prototype demonstratedbiel
gap insertion in the de-palletizing process and weasle
ready for installation on a factory floor at the Bfit-Stone
Container Corporation.

Introduction

In the paper-container industry, at the end ohestage of
the production line, paper bags are stacked layelayer
according to a specific pattern, as shown in Figlrdor
storing and transporting. Eventually, the stachags needs
to be un-stacked layer by layer and fed into a rimecfor
the next procedure in fabrication, or to be padkéal a box.
This is very labor-intensive work and it is hard fmmpa-
nies to find enough people to fill these positioAko, the
repetitive stack and un-stack work can easily cdnasd and
waist injury. For these reasons this robotic pailegy and
de-palletizing system was developed.

Figure 1. Pattern of Bag Stacking

One automated robotic de-palletizing system waade
six human stackers in each paper bag productianifina
three-shift operation. The initial investment fostallation is
recovered in one year. The robotic de-palletiziagktis
more challenge than is the palletizing work andyarduld
be done, previously, by a human worker by insertingers
into the gap (hole) formed by the stacking pattemthe
stack and taking off each group of bags layer lygdaFig-
ure 2 shows the gaps.

Figure 2. Gaps on Paper Bags Stack

A robotic de-palletizing system is required, apidied in
Figure 3, to insert a tool into the gap on thelstdden this
portion of bags is lifted up against a press baardhe end-
effector.
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Figure 3. Gap Insertion

The key problem for a robotic de-palletizer is hmareli-
ably and robustly achieve gap-center insertionhef me-
chanical finger without touching or disturbing tls¢ack.
Limited by the thickness and size of bags, therenly a
small tolerance for engagement-positioning errdre €xist-
ing teach/repeat way to use robots cannot solvetblelem
in this bag de-palletizing application because ¢lavation
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of the gap-center position and gap size is varialhle to

varying pressures depending upon the number ofrdaye

above it, the so-called “variable crunch” factolsd after
storage and transportation, the stack might rosditghtly
relative to the pallet. All of these variations maakimpossi-
ble to teach the robot every gap-center positiah @ienta-
tion in advance and just repeat the same actiamistack
the bags. Every gap should be located by the rolsgstem
individually. Therefore, only a sensor-guided robatystem
can achieve this task.

Camera-Space Manipulation (CSM)

Calibration and visual servoing are two mainstreaath-
ods of vision-guided robotics. Calibration buildsgkbal
geometric characterization of the mapping betweaohe
camera’s image space and 3D space in a pre-seleodd
coordinate system as well as the mapping betweerBih
space and the robot coordinate systems|[1],[2].b€ation
relies entirely on an accurate camera model arabat kin-
ematics model to deliver accurate positioning tssukny
error at any stage of such a system will contriliata final
positioning error. Also, in the real world, the s®iin an
image or a slight shift, for example temperatumuired, of
the parameters in camera or robot will corrupt tiwle
elaborate global model. Visual servoing takes aedidloop
control approach to drive the positioning errothe image
toward zero [3]. One of the biggest drawbacks Bual ser-
voing is that one needs to access the terminaf between
the current pose and target pose in order to atlesend-
effector to close in toward the target. In someliapfions
this would be impossible, such as where visual scdme-
comes obscured or where the target gets occluded &
camera as the system nears the target. The metheahs
era-space manipulation (CSM) emerged in the mid3$98
and developed over the past 20 years as a wayhievac
both robustness and precision in visually guidedimda-
tion without the need to acquire and sustain peecadibra-
tion of cameras and manipulator kinematics, asirediwy
calibration-based methods [4]. Additionally, CSMals the
visual-servoing requirements for very fast, realdiimage
processing and for visual access to image-planerserr
through to maneuver closure. Figure 4 shows thedioate
Frames of a typical system for visual guidance ablaot.
With calibration, the relationships among all ogésk frames
must be established and the parameters in eacbkfdran
mation model must be calibrated to within whatesegree
or extent of precision the maneuvers demand.

Camera Frame

End Effector Frame

T

Fuobot Biase Frame

Target Frame

Figure 4. Coordinate Frames of a Typical Vision Sytem

In contrast, CSM uses six parameters to localgniidy

the mapping relationship between the internal—aingctly
controllable—robot-joint rotations within the relat work-
space and the local 2D camera-space [5]. As inelicat
Figure 5, the physical 3D points, which scatteruacba lo-
cal origin (flattening point), are projected ontet2D im-
age-plane, with Xc-Yc, as “camera-space coordifiates
These physical 3D points are designated with rdsjmea
local frame, x- y- z, the axes of which are nominally par-
allel to the robot’s world frame and the origin which is
close to the 3D points within a model-asymptotioiire-
gion. The frame denoted by x-y-z is the robot frare
coordinate frame attached to the robot base. TdradrX-Y-
Z is the camera-fixed frame, and the Z axis isradiywith
the optical axis of the camera. The X and Y axesparallel
to the axes of the 2D image frame, Xc-Yc, and thgimis
on the system’s equivalent focal point.
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Figure 5. Coordinate Frames of Camera-Space Manipation
Vision System

This local mapping relationship is described byatpns
(1) and (2), which correspond to the assumptioarobrtho-
graphic camera model

Xc= Al1l*
Yc= A21*

X+A12*
X+A22*

y+A13*
y+A23*

z+Al14
z+A24

(1)
()
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where Xc, Yc represent the 2D image frame ard vy, z
representhe local frame x- y- z, with origin on the focal
axis and where A1l through A24 are groups of nealin
expressions dependent upon the six view parame@is,
C2, ..., C6, as follows:

All= C12+C22-C32-C42 A3)
A12= 2(C2C3+C1C4) 4)
A13= 2(C2C4-C1C3) (5)
Al4=C5 (6)

A21= 2(C2C3-C1C4) @)
A22= C12-C22+C32-C42 8)
A23= 2(C3C4+C1C2) 9)
A24= C6 (10)

The first four parameters, C1-C4, are proportidonaiour
Euler parameters used to characterize a relativntation
between the camera frame, where the camera-spapst ta
coordinates are based, and the nominal World-frafine.
last two parameters, C5 and C6, define the nonhixaltion,
in camera-space, of the origin of the local frame.

The view parameters establish a local relationgbgm-
era-space kinematics) between the internal rokat jota-
tions and the camera-space location of any poirtherma-
nipulated body. Together with laser-spot-based ssssent
of the maneuver objective in each camera spaceatmera-
space-kinematics relationships permit precise taticun of
the 3D coordinates of target points in the nomMédrld-
frame [6]. The nominal World-frame is a small, gratly
shifting translation and rotation of the actual Weframe
because of the local differences between the ndnfiara
ward kinematics and real forward kinematics of thbot.
Also, the system can calculate the joint rotatimtgiired for
the robot to position given junctures on its endher onto
target points in the nominal World-frame. It is ionfant that
view parameters of the orthographic camera modebaty
valid within the asymptotic-limit region, which sk to the
region both in physical space and joint space. Timns
two things: that an adequate number of end-mendrapkes
for estimating the view parameters should be aeduivith-
in the asymptotic-limit region, and the target paihould be
within the same asymptotic-limit region for higheprision
positioning. In order to enlarge the asymptoticHinegion,
a flattening procedure was used [7]. The flattempracedure
is based on a presumption of a pinhole projectigphgsical
points onto the 2D image plane, as depicted inreigu This
procedure consists of modifying the raw camera-ssam-
ples of junctures on the robot end-effector, sa thay be-
come more consistent with the orthographic modetmgiby
equations (1), (2).

image plana

focal axis

foeal
point

Figure 6. Projection According to the Pinhole Camea Model

The X coordinate of an ith raw camera-space sawipte
particular juncture on the robot end-effector is. e flat-
tened sample is determined by

Xci ’ Zi

Zo an
Which is based on the assumption of a pinhole ospse-
tive lens model, where Zi represents the locatibthe sam-
ple along the optical axis of the camera, and Zihésloca-
tion of the origin of the local framex- y- z, with respect
to the camera frame. The Y coordinate of the ith cam-

era-space sample, Yci, is determined by
Yci Zi
Z

° 12)
With the use of a weighting scheme on sample data,
which gives more emphasis to the sample closeedatyet
point when estimates of the view parameters areatepl
enlarging the asymptotic-limit region not only helimclude
more sample data, but also reduces the error cfenimi

sample data propagated into the positioning.

After the camera-space kinematics are establifdreghch
camera in the CSM vision system, one gets sepeaabera-
specific expressions for equations (1) and (2) hvitleast 2
cameras and corresponding camera-space coordufaties
target, the target 3D coordinates in the nominatid¢frame
can be estimated. With more than 2 cameras, thaawg of
estimation will be improved because of the geornedd-
vantage of any new viewpoint combined with the agérg
effect. The estimation procedure is as follows:

LASER-ASSISTEDUNCALIBRATED VISION GUIDED ROBOTIC DE-PALLETIZING

19



1. Choose an origin of the local frame, the cldeethe tar-
get, the better.

3. Take the image difference between these two ésdg
make only the laser spot stand out.

2. Compute [C1, C2... C6] for each camera using sasnpl4. Apply a “mask”, as indicated in Figure 7, in erdo con-

flattened about this local frame’s origin.

3. Estimate the relative position of the targetnpavith re-
spect to the local frame by solving the non-lineguations
(1) and (2).

4. Shift the origin of the local frame to the nevestimated
target position.

5. Repeat steps 2 through 4 until the shift oftdrget loca-
tion changes very little between corrective itenas.

Given nominal World-frame coordinates of a tardfe¢, pro-
cess of finding the camera-space coordinatesébadose the
target as the origin of the local frame, then cotdC1,

C2... C6] for each camera. C5 and C6 become Xc and Yc L

for the camera-space coordinates of the target.poin

3D Laser-Assisted Image Analysis

The difficulties and limitations of two-dimensidnenage
analysis are a primary obstacle for applying visjuided
robot technology in the real world. Though robotyrhave
the dexterity and steadiness to do any given, itepejob
better than a human in many respects, if the inzagdysis
cannot deliver reliable, precise and robust taxjstaliza-
tion information to the robot, even a simple tasicls as
picking up a box will not be possible.

These issues led to the development of a new iraagk
ysis in three-dimensions using an approach thatptom
ments CSM technology [8]. The target informatioonfrthe
3D image analysis is independent of changes imitation
or the material properties of the object surface anly re-
lates to the geometric characteristics of the dbgecface.
Another important advantage of doing image analysis
three-dimensional space is that it directly usesorpr
knowledge of three-dimensional geometric charasties of
the object's surface, which are partially lost aftee 3D
object is projected onto a 2D image plane. ThisiBior-
mation, for example from a CAD file, would faciliearelia-
bility and robustness, and enhance the utility e$uits
gained from 3D image analysis.

For detecting the location of the center of theetaspot in
each camera space, the laser-spot identificatiooeplure is
as follows [6]:

1. Turn on the laser pointer to highlight the jumetof inter-
est on the object surface with a laser spot. Aegthie image
of the object surface with the selection camera.

2. Turn off the laser pointer and acquire the imafehe
object surface with the camera.

dition the differenced image, replacing all pixellues ex-
cept those in the rightmost, leftmost, uppermost| lwer-
most three columns/rows with a new value calculdteskd
upon the mask formulation. The pixel with the kEsgvalue
in this result is detected as the center of therlapot from
the differenced image.

Mask
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Remaining elements are zero.

Figure 7. Applying a Mask to Each Pixel Provides Dia Re-
garding Its Value as well as Surrounding Pixel Vales

This laser-spot-identification procedure reliablgdaro-
bustly establishes the camera space targets umeleatious
illumination, color and texture conditions of thbject sur-
face. Laser spots are a powerful tool to help acties visual
information of selected junctures of the objectfaus. And
with CSM, the laser spots can be utilized to chiaréxe the
object surface prior to being addressed by thetrobo

The first step is to acquire and estimate the 3Bitjpms,
relative to the nominal World-frame, of laser-speanters
cast onto an object surface. Because of the adyandd
CSM, the 3D shape-measurement approach and theambi
illumination independence of using laser-spot idiattion,
the 3D data on an object surface are acquired Siyngathe
multiple laser spots onto the surface and idemigfyor
matching these spots among images from each camgra,
shown in Figure 8 [9]. Then, the laser-spot 3D damates in
the nominal World-frame are estimated.
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Figure 8. Multiple Laser Spots Casted on Object Stace
(Views from Three Cameras)

These data provide the geometric information of she
face addressed by the robot. This means the r@boposi-
tion given junctures on its end member at any reguplace
on this surface with high precision.

The second step is to characterize the geometityeofur-
face based on 3D-coordinate data of the surfacetpdBe-
cause the laser-spot-array direction can be shtightly
using the pan/tilt unit to cast down new surfacetspallow-
ing for accumulation of a virtually unlimited detysiof
points on the surface region of interest, the dattaraation
also takes advantage of the effect of averaginfiites out
image discretization and other noise. This charaetgon is
applied either to a previously known model of thgect's
surface geometry or to a quadratic or other polyinbige-
ometry in order to approximate segmented portiochgaro
unknown surface.

The third step is to analyze the characterized (@ifase to
identify the feature of interest for robot posifiog or oth-
erwise determine how to operate the robot. Consiide
example, the box-engagement task. After the 3Ddinates
of points on three indicated surfaces of the bexestimat-
ed, a plane is fitted to the top, front and siddfames, as
depicted in Figure 9. These three surfaces intetseform
edges and the corner of the box as the data iapiated.
Preferred weight is given to spots near the corfdis
stands in contrast with the traditional means @tdying
edges directly in 2D images.

Figure 9. Three surfaces meeting

There are three advantages of edge detection loes8D
image analysis. First, the edge-identification pdhae is
independent of variations in illumination and reflee
properites of various materials because the edgeshe
intersection of surfaces and the surfaces arafiitem the
laser-spot data, which are independent of lightioigditions.
This makes the vision-guided robot run reliably aollustly
under real-world illumination conditions, whichdgenerally
not achieved using traditional 2D-image edge datecSe-
cond, the detected edge is more precise, becaasmttr-
sections of fitted surfaces represent the geomaspects of
interest of the physical object. Frayed or damagddes
would not affect these plane intersections. Thihg, edge-
detection results directly represent the 3D gedmeharac-
teristics of the physical object. Prior knowledgeam ob-
ject's geometry can be utilized to falsify the edbgtection
results. For example, the three edges of a cubdwged box
should be physically perpendicular to each othgrcBeck-
ing angles among three detected edges, one canoda@n
incorrect result. This diagnosis makes the systebust.
Moreover, the geometric characteristics can betdteas
constraints in surface characterization to redheenumber
of parameters needed to be fitted into a surfacdeidA
smaller number of parameters of the model needeldeto
fitted results in less sensitivity to noise in tbata and,
thereby, reduces the required quantity of data.

Implementation

Figure 10 shows the overview of a vision-guided de
palletizing demonstration system. Three ceiling esn
view the gaps together with three near-planar sedaf the
stack. One single laser pointer and one multideri@ointer
are mounted on the pan/tilt unit. A six-axis rol®tcon-
trolled by a computer based on the visual infororatac-
quired from the cameras.

3 .
|

r v
Figure 10. Vision Guided De-palletizing System Ovetew
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The configuration of the fixed cameras is seldaiue to
the cycle-time requirement of the de-palletizingteyn for
keeping pace with paper-bag production lines. Caathto
the eye-on-hand configuration, fixed cameras caguise
images while the robot is placing the bags intofeéezler of
the paper-bag production line. Also, this configiom
avoids the problem of the robot blocking the lgz®jection
in the eye-on-hand configuration, which really slifigs the
robot path planning and task sequencing.

The vision-guided software written in C++ runs afC.
It reads and writes the robot joint coordinates itiite robot
controller through the serial port. The pantftittituis con-

trolled by the PC C++ program through an Ethernat.p
The image is acquired from cameras through a DT315(

frame grabber. An overall diagram of the systeshiswn in
Figure 11.

Raobot Carveras Laser Pan/Tilt
Pointer nit
Rohot Irnage Frame o
Controlle Grrabber Board
Rohiot Image Aeouiring | IO Winsocket
Cororouric ate Program Corornunic ate Ethernet
Frogram Progra Comranrication
Program

3D Irage &nalysis
Program

Caraera Space
Ianglation Prograr

Irage Processing
Program

Vigion guided software on PC

Figure 11. Overall Diagram of the System

Reliable and robust gap-center location and origmtais
critical. Traditional 2D image analysis to extrabe gap
center would be ineffective under varying illumiioat and
given the complex coloration of bags that typifg tompa-
ny’s product. Only the laser-spot-assisted 3D imagaysis
can extract the reliable gap target for the robbie proce-
dure includes these steps.

Step 1: Figure 12 shows the center, which ise smpesed
on the image with laser projection off, of detectedltiple
laser spots cast onto the top, front and side cesfaf the
stack. Spot centers are detected and matched acaoney-
as. Then, 3D coordinates of the centers are edriatthe
nominal-World-frame coordinates.

Figure 12. Center of Detected Multiple Laser Spoten Three
Surfaces of Bag Stack

Step 2: The laser spots close to the right uppenecoof
stack are used to fit three perpendicular planesntersect-
ing in order to find the edges and corner, as shiowfigure
13.

Figure 13. Edges and corner of the bags stack

Step 3: With the 3D coordinates of the corner i rtbminal
World-frame, and a known size and thickness oflihgs,
the center of whichever gap is closest to the eameugh-
ly estimated in the 3D nominal World-frame, as shaow
Figure 14.
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Figure 14. Rough Estimation of the Location of th&ap

Step 4: Analysis of the distribution of spots oa ffont sur-
face in the 3D nominal World-frame, which represettte
geometric characteristics of the front surface gagd, will

also identify the gap center. As illustrated in Uy 15, the
spots on the bottom can be identified by the dcstabe-
tween them and spots falling on the front surfaderefore,
fitting the front plane of the stack with the spateund the
gap and checking the distance of spots to the planeden-
tify the bottom-gap spots. Also, the front planevyides the
orientation of gap insertion. With knowledge of tep size,
the elevation of the gap center is estimated. tiyating the
pattern, and particularly the absence, of lasetssptiows
the system to verify the gap center and identgsize in 3D
nominal World-frame. This use of a redundant gamere
position and orientation determination providesatde and
robust targeting to insert the metal finger inte tap and
grasp the bags.

Pojct o side aser st 0 ag e lne

T T
00 00900 090, 0000,
o © © o

Figure 15. Laser Spots on Front Surface

Step 5: The robot inserts the tool into the gap arishear
actuator pushes the upper board to grasp the bagown
in Figure 16.

Up the Bags

Conclusions

The prototype for the de-palletizing system depetbin
this study demonstrated reliable gap insertion 1n uam-
stacking process. It showcased a unique advantagero-
bustness of the laser-spot-assisted 3D image amahjth
CSM. It also demonstrated the flexibility of thewnenethod
to guide the robot to perform the less complex2 fasks. It
is ready to be transferred to a factory floor testack vari-
ous types of bags, which have different color, maktesize,
etc, under a variable ambient lighting environmentthe
floor and vibration on the ceiling, where the visigystem is
mounted. This method can also be used in similar de
palletizing applications.
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