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Abstract  
 

In the paper-container industry, bag stacking and un-
stacking is labor-intensive work. It is hard for companies to 
find enough people to fill these positions. Also, the repetitive 
stack and un-stack work can easily cause back and waist 
injuries. Therefore, a robotic de-palletizing system is highly 
desirable. Guiding a robot tool reliably and robustly in order 
to insert into the gap in the bag stack to pick up a layer of 
bags without disturbing the stack is highly challenging due 
to the variation of the gap-center position and gap size under 
varying pressure depending upon the number of layers above 
it, the so-called “variable crunch” factor.  In this study, a 
method combining an uncalibrated vision and 3D laser-
assisted image analysis based on camera-space manipulation 
(CSM) was developed. The prototype demonstrated reliable 
gap insertion in the de-palletizing process and was made 
ready for installation on a factory floor at the Smurfit-Stone 
Container Corporation. 
 

Introduction 
 
 In the paper-container industry, at the end of each stage of 
the production line, paper bags are stacked layer by layer 
according to a specific pattern, as shown in Figure 1, for 
storing and transporting. Eventually, the stack of bags needs 
to be un-stacked layer by layer and fed into a machine for 
the next procedure in fabrication, or to be packed into a box. 
This is very labor-intensive work and it is hard for compa-
nies to find enough people to fill these positions. Also, the 
repetitive stack and un-stack work can easily cause back and 
waist injury. For these reasons this robotic palletizing and 
de-palletizing system was developed.  
 

 
Figure 1. Pattern of Bag Stacking 

 
 

 One automated robotic de-palletizing system would save 
six human stackers in each paper bag production line in a 
three-shift operation. The initial investment for installation is 
recovered in one year. The robotic de-palletizing task is 
more challenge than is the palletizing work and only could 
be done, previously, by a human worker by inserting fingers 
into the gap (hole) formed by the stacking pattern on the 
stack and taking off each group of bags layer by layer. Fig-
ure 2 shows the gaps. 
 

 
Figure 2. Gaps on Paper Bags Stack 

 
 A robotic de-palletizing system is required, as depicted in 
Figure 3, to insert a tool into the gap on the stack. Then this 
portion of bags is lifted up against a press board on the end-
effector. 
 

 
Figure 3. Gap Insertion 
 
 The key problem for a robotic de-palletizer is how to reli-
ably and robustly achieve gap-center insertion of the me-
chanical finger without touching or disturbing the stack. 
Limited by the thickness and size of bags, there is only a 
small tolerance for engagement-positioning error. The exist-
ing teach/repeat way to use robots cannot solve the problem 
in this bag de-palletizing application because the elevation 
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of the gap-center position and gap size is variable due to 
varying pressures depending upon the number of layers 
above it, the so-called “variable crunch” factor. Also, after 
storage and transportation, the stack might rotate slightly 
relative to the pallet. All of these variations make it impossi-
ble to teach the robot every gap-center position and orienta-
tion in advance and just repeat the same action to un-stack 
the bags. Every gap should be located by the robotic system 
individually. Therefore, only a sensor-guided robotic system 
can achieve this task. 
 

Camera-Space Manipulation (CSM) 
  

Calibration and visual servoing are two mainstream meth-
ods of vision-guided robotics. Calibration builds a global 
geometric characterization of the mapping between each 
camera’s image space and 3D space in a pre-selected world 
coordinate system as well as the mapping between the 3D 
space and the robot coordinate systems[1],[2]. Calibration 
relies entirely on an accurate camera model and a robot kin-
ematics model to deliver accurate positioning results. Any 
error at any stage of such a system will contribute to a final 
positioning error. Also, in the real world, the noise in an 
image or a slight shift, for example temperature-induced, of 
the parameters in camera or robot will corrupt the whole 
elaborate global model. Visual servoing takes a closed-loop 
control approach to drive the positioning error in the image 
toward zero [3]. One of the biggest drawbacks in visual ser-
voing is that one needs to access the terminal error between 
the current pose and target pose in order to adjust the end-
effector to close in toward the target. In some applications 
this would be impossible, such as where visual access be-
comes obscured or where the target gets occluded from a 
camera as the system nears the target. The method of cam-
era-space manipulation (CSM) emerged in the mid-1980s 
and developed over the past 20 years as a way to achieve 
both robustness and precision in visually guided manipula-
tion without the need to acquire and sustain precise calibra-
tion of cameras and manipulator kinematics, as required by 
calibration-based methods [4]. Additionally, CSM avoids the 
visual-servoing requirements for very fast, real-time image 
processing and for visual access to image-plane errors 
through to maneuver closure. Figure 4 shows the Coordinate 
Frames of a typical system for visual guidance of a robot. 
With calibration, the relationships among all of these frames 
must be established and the parameters in each transfor-
mation model must be calibrated to within whatever degree 
or extent of precision the maneuvers demand.  

 

 
Figure 4. Coordinate Frames of a Typical Vision System 
 
 In contrast, CSM uses six parameters to locally identify  
the mapping relationship between the internal—and directly 
controllable—robot-joint rotations within the relative work-
space and the local 2D camera-space [5]. As indicated in 
Figure 5, the physical 3D points, which scatter around a lo-
cal origin (flattening point), are projected onto the 2D im-
age-plane, with Xc-Yc, as “camera-space coordinates”. 
These physical 3D points are designated with respect to a 
local frame, � x-� y-� z, the axes of which are nominally par-
allel to the robot’s world frame and the origin of which is 
close to the 3D points within a model-asymptotic-limit re-
gion. The frame denoted by x-y-z is the robot frame, the 
coordinate frame attached to the robot base. The frame X-Y-
Z is the camera-fixed frame, and the Z axis is aligned with 
the optical axis of the camera. The X and Y axes are parallel 
to the axes of the 2D image frame, Xc-Yc, and the origin is 
on the system’s equivalent focal point. 
 

 
Figure 5. Coordinate Frames of Camera-Space Manipulation 
Vision System 

 
 This local mapping relationship is described by equations 
(1) and (2), which correspond to the assumption of an ortho-
graphic camera model 
 
Xc= A11*� x+A12*� y+A13*� z+A14 (1) 
Yc= A21*� x+A22*� y+A23*� z+A24 (2) 
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where Xc, Yc represent the 2D image frame and � x, � y, � z 
represent the local frame � x-� y-� z, with origin on the focal 
axis and where A11 through A24 are groups of nonlinear 
expressions dependent upon the six view parameters, C1, 
C2, …, C6, as follows: 

 
A11= C12+C22-C32-C42   (3) 
A12= 2(C2C3+C1C4)  (4) 
A13= 2(C2C4-C1C3)  (5) 
A14= C5   (6) 
A21= 2(C2C3-C1C4)  (7) 
A22= C12-C22+C32-C42  (8) 
A23= 2(C3C4+C1C2)  (9) 
A24= C6  (10) 

 
 The first four parameters, C1-C4, are proportional to four 
Euler parameters used to characterize a relative orientation 
between the camera frame, where the camera-space target 
coordinates are based, and the nominal World-frame. The 
last two parameters, C5 and C6, define the nominal location, 
in camera-space, of the origin of the local frame. 
 
 The view parameters establish a local relationship (cam-
era-space kinematics) between the internal robot joint rota-
tions and the camera-space location of any point on the ma-
nipulated body. Together with laser-spot-based assessment 
of the maneuver objective in each camera space, the camera-
space-kinematics relationships permit precise calculation of 
the 3D coordinates of target points in the nominal World-
frame [6]. The nominal World-frame is a small, gradually 
shifting translation and rotation of the actual World-frame 
because of the local differences between the nominal for-
ward kinematics and real forward kinematics of the robot. 
Also, the system can calculate the joint rotations required for 
the robot to position given junctures on its end member onto 
target points in the nominal World-frame. It is important that 
view parameters of the orthographic camera model are only 
valid within the asymptotic-limit region, which refers to the 
region both in physical space and joint space. This means 
two things: that an adequate number of end-member samples 
for estimating the view parameters should be acquired with-
in the asymptotic-limit region, and the target point should be 
within the same asymptotic-limit region for high-precision 
positioning. In order to enlarge the asymptotic-limit region, 
a flattening procedure was used [7]. The flattening procedure 
is based on a presumption of a pinhole projection of physical 
points onto the 2D image plane, as depicted in Figure 6. This 
procedure consists of modifying the raw camera-space sam-
ples of junctures on the robot end-effector, so that they be-
come more consistent with the orthographic model given by 
equations (1), (2).  
 

 
Figure 6. Projection According to the Pinhole Camera Model 

 
 The X coordinate of an ith raw camera-space sample of a 
particular juncture on the robot end-effector is Xci. The flat-
tened sample is determined by 

                                      o

ici

Z
ZX ´

                                  (11) 
Which is based on the assumption of a pinhole or perspec-
tive lens model, where Zi represents the location of the sam-
ple along the optical axis of the camera, and Zo is the loca-
tion of the origin of the local frame, � x-� y-� z, with respect 
to the camera frame. The Y coordinate of the ith raw cam-
era-space sample, Yci, is determined by  

                                       o

ici

Z
ZY ´

                                   (12) 
With the use of a weighting scheme on sample data, one 
which gives more emphasis to the sample close to the target 
point when estimates of the view parameters are updated, 
enlarging the asymptotic-limit region not only helps include 
more sample data, but also reduces the error of noise in 
sample data propagated into the positioning. 
 
 After the camera-space kinematics are established for each 
camera in the CSM vision system, one gets separate camera-
specific expressions for equations (1) and (2). With at least 2 
cameras and corresponding camera-space coordinates of the 
target, the target 3D coordinates in the nominal World-frame 
can be estimated. With more than 2 cameras, the accuracy of 
estimation will be improved because of the geometric ad-
vantage of any new viewpoint combined with the averaging 
effect. The estimation procedure is as follows: 
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1. Choose an origin of the local frame, the closer to the tar-
get, the better. 
2. Compute [C1, C2… C6] for each camera using samples 
flattened about this local frame’s origin. 
3. Estimate the relative position of the target point with re-
spect to the local frame by solving the non-linear equations 
(1) and (2). 
4. Shift the origin of the local frame to the newly estimated 
target position. 
5. Repeat steps 2 through 4 until the shift of the target loca-
tion changes very little between corrective iterations. 
 
Given nominal World-frame coordinates of a target, the pro-
cess of finding the camera-space coordinates is to choose the 
target as the origin of the local frame, then compute [C1, 
C2… C6] for each camera. C5 and C6 become Xc and Yc 
for the camera-space coordinates of the target point. 
 

3D Laser-Assisted Image Analysis 
 
 The difficulties and limitations of two-dimensional image 
analysis are a primary obstacle for applying vision-guided 
robot technology in the real world. Though robots may have 
the dexterity and steadiness to do any given, repetitive job 
better than a human in many respects, if the image analysis 
cannot deliver reliable, precise and robust target visualiza-
tion information to the robot, even a simple task such as 
picking up a box will not be possible. 
 
 These issues led to the development of a new image anal-
ysis in three-dimensions using an approach that comple-
ments CSM technology [8]. The target information from the 
3D image analysis is independent of changes in illumination 
or the material properties of the object surface and only re-
lates to the geometric characteristics of the object surface. 
Another important advantage of doing image analysis in 
three-dimensional space is that it directly uses prior 
knowledge of three-dimensional geometric characteristics of 
the object’s surface, which are partially lost after the 3D 
object is projected onto a 2D image plane. This 3D infor-
mation, for example from a CAD file, would facilitate relia-
bility and robustness, and enhance the utility of results 
gained from 3D image analysis. 
 
 For detecting the location of the center of the laser spot in 
each camera space, the laser-spot identification procedure is 
as follows [6]: 
 
1. Turn on the laser pointer to highlight the juncture of inter-
est on the object surface with a laser spot. Acquire the image 
of the object surface with the selection camera. 
2. Turn off the laser pointer and acquire the image of the 
object surface with the camera. 

3. Take the image difference between these two images to 
make only the laser spot stand out. 
4. Apply a “mask”, as indicated in Figure 7, in order to con-
dition the differenced image, replacing all pixel values ex-
cept those in the rightmost, leftmost, uppermost, and lower-
most three columns/rows with a new value calculated based 
upon the mask formulation.  The pixel with the largest value 
in this result is detected as the center of the laser spot from 
the differenced image. 

 
Figure 7. Applying a Mask to Each Pixel Provides Data Re-
garding Its Value as well as Surrounding Pixel Values 

 
This laser-spot-identification procedure reliably and ro-

bustly establishes the camera space targets under the various 
illumination, color and texture conditions of the object sur-
face. Laser spots are a powerful tool to help access the visual 
information of selected junctures of the object surface. And 
with CSM, the laser spots can be utilized to characterize the 
object surface prior to being addressed by the robot. 

 
The first step is to acquire and estimate the 3D positions, 

relative to the nominal World-frame, of laser-spot centers 
cast onto an object surface. Because of the advantage of 
CSM, the 3D shape-measurement approach and the ambient-
illumination independence of using laser-spot identification, 
the 3D data on an object surface are acquired by casting the 
multiple laser spots onto the surface and identifying or 
matching these spots among images from each camera, as 
shown in Figure 8 [9]. Then, the laser-spot 3D coordinates in 
the nominal World-frame are estimated. 
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Figure 8.  Multiple Laser Spots Casted on Object Surface 
(Views from Three Cameras) 
 

These data provide the geometric information of the sur-
face addressed by the robot. This means the robot can posi-
tion given junctures on its end member at any required place 
on this surface with high precision.  

 
The second step is to characterize the geometry of the sur-

face based on 3D-coordinate data of the surface points. Be-
cause the laser-spot-array direction can be shifted slightly 
using the pan/tilt unit to cast down new surface spots, allow-
ing for accumulation of a virtually unlimited density of 
points on the surface region of interest, the characterization 
also takes advantage of the effect of averaging to filter out 
image discretization and other noise. This characterization is 
applied either to a previously known model of the object’s 
surface geometry or to a quadratic or other polynomial ge-
ometry in order to approximate segmented portions of an 
unknown surface.  

 
The third step is to analyze the characterized 3D surface to 

identify the feature of interest for robot positioning or oth-
erwise determine how to operate the robot.  Consider, for 
example, the box-engagement task. After the 3D coordinates 
of points on three indicated surfaces of the box are estimat-
ed, a plane is fitted to the top, front and side surfaces, as 
depicted in Figure 9. These three surfaces intersect to form 
edges and the corner of the box as the data is extrapolated. 
Preferred weight is given to spots near the corner. This 
stands in contrast with the traditional means of identifying 
edges directly in 2D images. 

 

 
Figure 9. Three surfaces meeting 
 

There are three advantages of edge detection based on 3D 
image analysis. First, the edge-identification procedure is 
independent of variations in illumination and reflective 
properites of various materials because the edges are the 
intersection of surfaces and the surfaces are fitted from the 
laser-spot data, which are independent of lighting conditions. 
This makes the vision-guided robot run reliably and robustly 
under real-world illumination conditions, which is generally 
not achieved using traditional 2D-image edge detection. Se-
cond, the detected edge is more precise, because the inter-
sections of fitted surfaces represent the geometric aspects of 
interest of the physical object. Frayed or damaged edges 
would not affect these plane intersections. Third, the edge-
detection results directly represent the 3D geometric charac-
teristics of the physical object. Prior knowledge of an ob-
ject’s geometry can be utilized to falsify the edge detection 
results. For example, the three edges of a cuboid-shaped box 
should be physically perpendicular to each other. By check-
ing angles among three detected edges, one can diagnose an 
incorrect result. This diagnosis makes the system robust. 
Moreover, the geometric characteristics can be treated as 
constraints in surface characterization to reduce the number 
of parameters needed to be fitted into a surface model. A 
smaller number of parameters of the model needed to be 
fitted results in less sensitivity to noise in the data and, 
thereby, reduces the required quantity of data. 
 

Implementation  
  
 Figure 10 shows the overview of a vision-guided de-
palletizing demonstration system. Three ceiling cameras 
view the gaps together with three near-planar surfaces of the 
stack. One single laser pointer and one multiple laser pointer 
are mounted on the pan/tilt unit. A six-axis robot is con-
trolled by a computer based on the visual information ac-
quired from the cameras.  
 

 
Figure 10. Vision Guided De-palletizing System Overview 
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   The configuration of the fixed cameras is selected due to 
the cycle-time requirement of the de-palletizing system for 
keeping pace with paper-bag production lines. Compared to 
the eye-on-hand configuration, fixed cameras can acquire 
images while the robot is placing the bags into the feeder of 
the paper-bag production line. Also, this configuration 
avoids the problem of the robot blocking the laser projection 
in the eye-on-hand configuration, which really simplifies the 
robot path planning and task sequencing. 
 
 The vision-guided software written in C++ runs on a PC. 
It reads and writes the robot joint coordinates into the robot 
controller through the serial port.  The pan/tilt unit is con-
trolled by the PC C++ program through an Ethernet port. 
The image is acquired from cameras through a DT3150 
frame grabber. An overall diagram of the system is shown in 
Figure 11. 
 

   
Figure 11. Overall Diagram of the System 
 
Reliable and robust gap-center location and orientation is 
critical. Traditional 2D image analysis to extract the gap 
center would be ineffective under varying illumination and 
given the complex coloration of bags that typify the compa-
ny’s product. Only the laser-spot-assisted 3D image analysis 
can extract the reliable gap target for the robot. The proce-
dure includes these steps. 
 
Step 1: Figure 12 shows the center, which ise superimposed 
on the image with laser projection off, of detected multiple 
laser spots cast onto the top, front and side surfaces of the 
stack. Spot centers are detected and matched among camer-
as. Then, 3D coordinates of the centers are estimated in the 
nominal-World-frame coordinates. 

 

 
Figure 12. Center of Detected Multiple Laser Spots on Three 
Surfaces of Bag Stack 
 
Step 2: The laser spots close to the right upper corner of 
stack are used to fit three perpendicular planes for intersect-
ing in order to find the edges and corner, as shown in Figure 
13. 
 

 
Figure 13. Edges and corner of the bags stack 

 
Step 3: With the 3D coordinates of the corner in the nominal 
World-frame, and a known size and thickness of the bags, 
the center of whichever gap is closest to the corner is rough-
ly estimated in the 3D nominal World-frame, as shown in 
Figure 14. 
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Figure 14. Rough  Estimation of the Location of the Gap 
  
Step 4: Analysis of the distribution of spots on the front sur-
face in the 3D nominal World-frame, which represents the 
geometric characteristics of the front surface and gap, will 
also identify the gap center. As illustrated in Figure 15, the 
spots on the bottom can be identified by the distance be-
tween them and spots falling on the front surface. Therefore, 
fitting the front plane of the stack with the spots around the 
gap and checking the distance of spots to the plane can iden-
tify the bottom-gap spots. Also, the front plane provides the 
orientation of gap insertion. With knowledge of the gap size, 
the elevation of the gap center is estimated. Investigating the 
pattern, and particularly the absence, of laser spots allows 
the system to verify the gap center and identify its size in 3D 
nominal World-frame. This use of a redundant gap-center 
position and orientation determination provides reliable and 
robust targeting to insert the metal finger into the gap and 
grasp the bags. 

 
Figure 15. Laser Spots on Front Surface 

 
Step 5: The robot inserts the tool into the gap and a linear 
actuator pushes the upper board to grasp the bags, as shown 
in Figure 16. 

 
Figure 16. The Robot Inserted the Tool Into the Gap and Pick 
Up the Bags 
 

Conclusions 
 
 The prototype for the de-palletizing system developed in 
this study demonstrated reliable gap insertion in an un-
stacking process. It showcased a unique advantage, the ro-
bustness of the laser-spot-assisted 3D image analysis with 
CSM. It also demonstrated the flexibility of the new method 
to guide the robot to perform the less complex 2.5 D tasks. It 
is ready to be transferred to a factory floor to un-stack vari-
ous types of bags, which have different color, material, size, 
etc, under a variable ambient lighting environment on the 
floor and vibration on the ceiling, where the vision system is 
mounted. This method can also be used in similar de-
palletizing applications. 
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