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Abstract  
  

This study looked at the use of three positions and two ve-

locities to define algebraic design equations for the synthesis 

of planar two-bar linkages, which were solved to obtain multi-

ple solutions.  To ensure that the four-bar linkage constructed 

from two of the solutions moves smoothly through the given 

task, Filemon’s construction and Waldron’s circle diagrams 

were used. The main contribution of this study was that both 

methods were found to have direct application in the planar 

four-bar linkage synthesis theory with task positions and ve-

locity specifications. The authors showed that the task posi-

tions provide the geometric features of the position synthesis, 

such as the pole triangle and Waldron’s three-circle diagram, 

while the velocities can be used to reshape the coupler move-

ment for non-branching solutions. 

  

The examples in the end show how to obtain fully opera-

tional four-bar mechanisms using a combination of the Wal-

dron and Filemon constructions. It is important to realize that 

the techniques described here are very useful for avoiding 

branching in planar four-bar linkages and can become a pow-

erful tool for the future design of novel closed-loop mechani-

cal systems.  

  

Introduction 

 

In this study, the authors considered the synthesis of planar 

RR chains to guide a floating link through five multiply sepa-

rated positions (see Figure 1).  The kinematic specification is 

three task positions with two specified velocities, denoted PP-

P-PP [1], [2].  The goal in this study was to assemble a 4R 

linkage from the solutions to this design problem that could 

move its coupler smoothly through the task positions. 

 

 A fundamental problem in kinematic synthesis is the po-

tential for a parallel assembly of chains, such as the 4R link-

age constructed from two RR chains, to result in a work-

space that separates the task positions either physically or 

with a linkage singularity.  This is called branching [3], [4], 

known also as mechanism defect [5], [6]. One approach to 

avoiding the branching problem is to introduce free parame-

ters by solving a reduced-design problem, which admits a 

manifold of solutions. Conditions that identify branching 

designs are imposed on this manifold to define subsets of 

useful designs [7]. Another approach is to use optimization 

theory to design the complete parallel system with branch-

ing conditions imposed as constraints on the solution [8], 

[9]. 

 

In this study, the authors introduced a new approach that 

presents both the design goal and evaluation of the resulting 

linkage.  In this formulation, the authors solved the com-

plete five multiply separated position synthesis problem, and 

allowed the designer to modify the design specifications, 

while evaluating features of the resulting design.  Experi-

ments showed that this procedure could yield an effective 

non-branching design to meets the designer's goals. 

 
 

Figure 1. The five multiply separated position task, consisting of 

i=3 specified positions
iT = ),,( yixii ppφ and j=2 velocities 

),,( yjxjjj ppV &&&φ=  defined in the first and third position 

 

Synthesis Equations for an RR Chain 
  

 In order to synthesize a planar 4R chain, the authors formu-

lated and solved the design equations for the planar RR serial 

chain.  The analytical solution of these design equations 

yielded zero, two, or four sets of real values for the design 

parameters for RR chains that ensured that the floating link 

moved through the task positions.  When two of these chains 

were connected in parallel, the workspace of the system was 

reduced from two to one dimension because the 4R chain had 

one degree-of-freedom. It happens that this one-dimensional 

workspace can take the form of a single closed curve with 

two singular configurations, or can be separated into two real 

curves, called branches, each of which may have two singu-

lar configurations. The focus here was on finding linkage 

designs that guide the floating link through all of the speci-

fied task positions such that they are on the same branch and 

do not encounter a singular configuration. 
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Kinematic Specification 

  

The authors’ formulation of the design equations for the 

RR chain followed those by Suh & Radcliffe [10] and Russel 

& Sodhi [11].   The kinematic specification consisted of three 

rotations and translations given by  

iT = ),,( yixii ppφ ; i=1,2,3 and two sets of angular and linear 

velocities, defined in the first and third positions 

),,( yjxjjj ppV &&&φ= ; j = 2,3 where 

 

From Figure 1, 1111 ,,( yx ppV &&&φ= ) and 3333 ,,( yx ppV &&&φ= ) 

are the angular and linear task velocities defined in the first 

and third positions, respectively. The position data iT = 

),,( yixii ppφ is assembled into the 3  3 homogeneous 

transform equation (2), 

 

and the velocity data ),( , jjjj wvV ω=  defines the 3  3 

velocity matrix [ iΩ ]=[ iT& ][
1−

iT ] given by 

 
 

Design Equations 

 

   The design parameters for the RR chain have the 

coordinates G= )1,,( yx GG of the fixed pivot, the 

coordinates 
1W = ( 1,, yX WW ) of the moving pivot 

when the floating link is in the first position, and the 

length R of the link.  Notice that in each task posi-

tion the moving pivot
iW is constrained to lie at the 

distance R from G, so we have, 

 

 

This equation also imposes a constraint on the veloci-

ty
j

dt

d
W of the moving pivot, such that in each task 

position 

 

The coordinates 
iW  of the moving pivot in each of 

the task positions are given by the formulas 

 

where [ iD1 ]=[
1

1][ −TTi ] is the relative displacement from 

the first task position to position i.  Similarly, the veloci-

ties
j

dt

d
W are given by    

 

 
The design equations (4) and (5) are quadratic in the design 

variables ),,,,( RWWGG yxyx . However, these equations 

can be simplified to four bilinear equations in the four un-

knowns ),,,( yxyx WWGG  . McCarthy [14] demonstrates 

this for five position synthesis.  Thus, there can be as many 

as four real solutions to this design problem. 

  

Center Point and Circle Point 

Curves 
  

   The dimensions of a four-bar linkage with a specific 

number of positions of the coupler plane can be determined 

from the center-point and the circle-point curves. These 

curves could be obtained by plotting the cubic polynomials 

either in the fixed pivots ),( ynxn GG , which results in 

center-point curves or in the moving pivots (
xnW ,

ynW ), 

which results in circle-point curves, where n is the number 

of solutions to the design problem. For the particular case 

of three positions and two specified velocities used in this 

study, the number of solutions is at most four and, there-

fore, four center-point curves and four circle-point curves 

were obtained (see Figures 2(a) and 2(b)).   
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          (a)  
 

 
(b) 

Figure 2(a) The points of intersection of the center-point curves 

define the coordinates of the four fixed pivots G. (b) The points of 

intersection of the circle-point curves define the coordinates of 

the four moving pivots W 

  

Filemon’s Construction and Waldron’s 

Circle Diagram 
  

As mentioned above, the dimensions of the theoretically 

possible 4R linkages, which pass through specific positions of 

the coupler plane, were determinable from the center-point 

and the circle-point curves. When using these curves for syn-

thesis, some of the solutions did not perform the prescribed 

task due to constructional reasons [14]. The Filemon and Wal-

dron constructions are helpful in defining the existence of a 

solution. In this paper, the authors show how to obtain a de-

sired result in cases where there are no solutions, which satisfy 

the conditions. 

  

Filemon’s Construction 
  

In the early seventies, Filemon [13] introduced a construc-

tion for the moving pivot of the input crank of a 4R linkage 

that ensures the smooth movement of the linkage through the 

task positions. The construction assumes that an output crank 

outG
1

outW has been selected. It is then possible to determine 

how this crank rotates to reach each of the design positions. 

Viewed from the coupler, this link sweeps out two wedge-

shaped regions. Filemon showed that all that is necessary to 

guarantee that the resulting four-bar linkage will pass through 

the design positions was to choose the input moving pivot 

outside of these regions (see Figure 3). For any choice of the 

output moving pivot, 
1

outW  , a unique fixed pivot, outG , can be 

determined. The positions that outG can take relative to the 

moving frame are computed using the relative inverse dis-

placements ][ 1

1

−

iT  as: 

  

where ][][ 1

1

1

1

−= ii TT . The two angles, measured from 
1

outG  

to 
2

outG  and 
2

outG to 
3

outG combine to form the wedge swept 

by the driven crank relative to the moving frame. The input 

moving pivot 
1

inW  should be chosen from outside of the 

wedge-shaped region. The resulting 4R linkage will pass 

through the design positions before the coupler lines up with 

the output crank, which defines the limit to the movement of 

the input crank. 

 

 
Figure 3. Filemon's Construction. W1 is the chosen output 

moving pivot  
1

outW and G1 is it's corresponding unique 

fixed pivot outG . The rotation of the output crank W1G1 iden-

tifies wedge-swept regions, defined by G11= 1

outG , G12=
2

outG , 

G13=
3

outG  in this particular case, only W4 can be chosen for an 

input moving pivot 

 

The Pole Triangle 

  

If there are three positions for a moving body, then the 

displacements can be considered in pairs and one can de-

termine the poles P12, P23, P13 and the associated relative 

rotation angles 132312 ,, φφφ . It is easy to see that the dis-

placements given by )13,(: 1313 PT φ is obtained by the 
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sequence of the two displacements )12,(: 1212 PT φ  fol-

lowed by ).23,(: 2323 PT φ  Resulting in .122313 φφφ +=  

The three poles form a triangle, known as the pole triangle. 

Informatively, the image pole triangle is a mirror image of 

the pole triangle along a common side. 

  

Waldron’s Three-circle Diagram 
  

In the mid seventies, Waldron [12] showed that if the 

output pivot 
1

outW rotates so that any of the angles measured 

from 
1

outG  to 
2

outG , or 
2

outG  to 
3

outG , or 
1

outG  to 
3

outG  is 

greater than or equal to π , there is no solution. This lead 

him to consider the point of viewing each side of the image 

pole triangle in 
2

π
 and defining the three-circle diagram. 

The poles P12, IP23, P13 of the relative inverse displace-

ments ][],[],[ 1

13

1

23

1

12 TTT define an image pole triangle (see 

Figure 4). The center-point theorem applied to the image 

pole triangle yields the result that the moving pivot 
1

outW  

views the sides of this triangle at a rotation angle 2/ikα−  

of the coupler relative to the RR chain. Thus, for a point W 

and a side 
11

jkij pp  of the image pole triangle, we have the 

relation: 

 

 The points that have 2/ikα− = 
2

π
 lie on the circles: 

 

The diameters of these circles are the segments
11

jkij PP . The 

three circles, ,, 2312 CC 13C , bound regions of points for 

which 2/ikα− >
2

π
. Points outside of these circles, as well 

as points in regions where they overlap, can be used as mov-

ing pivots
1

outW . For these points, the output crank 

outG
1

outW has a solution. The result is a 4R linkage that moves 

through the three specified positions before it reaches a limit 

to the range of movement of the input crank. 

 

In what follows, the authors showed that both the Filemon and 

Waldron constructions proved to be applicable in solving for 

non-branching solutions in the design of planar four-bar link-

ages.  Waldron’s diagram identified regions of moving pivots 

that ensured that Filemon’s construction would yield useful 

driving pivots. It turns out that Filemon’s construction gave 

non-branching solutions only when the input and/or output 

moving pivot(s) were chosen to be outside of the Waldron 

bounded region. 

 

 
Figure 4. Waldron's Three-circle diagram. The poles P12, IP23, 

P13 define the image pole triangle and the poles P12, P13, P23 

define the pole triangle. For this particular example only W1 and 

W2 can be considered as a moving pivots, since they lie at a plac-

es where two of the circles overlap 

  

The Coupler Velocity Pole 

  

   A point of the moving plane that instantaneously has zero 

velocity may be located using equation (3), as follows: 

 
where p is an arbitrary point of the plane with specified 

motion. This leads to the equations for the coordinates of 

the velocity pole: 

 
Note that the location of the velocity pole for a plane mo-

tion mechanism can be defined in purely geometrical 

terms. The velocity pole or instant center for the coupler 

in a four-bar planar mechanism is located in the intersec-

tion of the line of centers of the two guiding cranks. 

Therefore, given the four solutions for the fixed G = 

( iyix GG , ) and for the moving W= ( ixW , iyW ) pivots of 

the 4R, we can express their relation to the coupler veloci-

ty pole in the two positions where task velocity specifica-

tions exist, can be expressed by: 
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A property of the coupler velocity pole, defined in a par-

ticular position, is that it lies on the center-point curves. 

The image velocity pole, defined as imagep = ( oyp , -

oxp ), lies on the circle-point curves. Therefore, modifica-

tion of the task velocities in a particular position will re-

sult in alteration of the coupler velocity pole in this posi-

tion, in reshaping the center-point and circle-point curves, 

and will result in shifting branching solution(s) in areas 

where the Waldron and Filemon constructions yield suc-

cessful designs. 

 

In the following sections, the authors apply equations (12) 

and (13) to one of the task positions with velocity specifi-

cation in order to shift the branching solutions out of the 

bounded regions defined by Filemon’s construction and 

Waldron’s three-circle diagram. 

  

Numerical Examples and  

Comments 
  

The smooth motion of the coupler of a resulting design 

was evaluated using both Filemon’s construction and 

Waldron’s three-circle diagram. The Waldron diagram 

was used first since it identifies regions of moving pivots 

that ensure that Filemon’s construction yields useful driv-

ing pivots. In other words, the solution existence was test-

ed by the Waldron diagram, while Filemon’s construction 

lead to the identification of the driving and the driven 

cranks. The main steps of this procedure are: 

1) Plot Waldron’s three-circle diagram, which depends 

only on task-position data. It is useful to plot also the task 

positions and velocities, as well as the coupler velocity 

poles (VP1 and VP3 in our case) in the positions, where 

task velocities are specified; 

2) Chose two of the moving pivots, nW , n=2, for the design of 

the planar four-bar and examine their position according to  

Waldron’s construction. If one or both solutions need to be 

shifted outside of the bounded region to a “safe” location, pro-

ceed to the next step. If solution(s) do not need to be shifted, 

proceed directly to step 5; 

3) Chose one of the two positions with velocity specification. 

Modify the coordinates of the velocity pole or the moving 

pivot, xiW , yiW , by applying equation (13). This will result in 

shifting W to a new "safe" location. Note, however, that 

changes in the W coordinates result in new coordinates for the 

corresponding fixed pivot ,xiG , yiG ; 

4) Solve equation(12) to obtain the new task velocity specifi-

cations, V ),( oyioxii ppP &&= , in the chosen position; 

5) Plot the coupler velocity poles (VP1 and VP3 for this study) 

in the positions where task velocities are specified; 

6) Use Filemon's construction and plot the four positions 

( outG 1, outG 2, outG 3, outG 4) the chosen unique pivot 

outG can take. Plot also the solutions for the moving pivots 

(W1, W2, W3, W4) resulting from the synthesis of the 2R; 

7) From the two chosen solutions, determine on input/driving 

and output/driven crank, using Filemon’s construction. This 

will guarantee a successful four-bar linkage design; and, 

8) Animate the four-bar linkage to ensure that it moves 

smoothly through the specified task. 

 

In the end, it should be noted, that if the aim is towards a 

minimal deviation of the modified task from the originally 

specified one, then generating an array of uniform values in 

the vicinity of the originally specified velocity pole is needed. 

Next, the closest solution should be chosen and tested if it 

satisfies the Waldron and Filemon constructions.  

  

Successful Design of a Four-bar  

Linkage: Example 
  

The data set for this example is shown in Table 1.  

 

Table 1. Data set 

 
 

Figure 6(a) shows Waldron’s construction, the coupler ve-

locity poles in the first and third positions, VP1 and VP3, as 

well as the four solutions for W (smaller points) and G 

(thicker points), respectively.  It can be seen that all fixed 

pivots, nG , as well as the coupler velocity poles (VP1 and 

VP3) lie on the center-point curve (solid), while the moving 

pivots, nW , are on the circle-point curve (dashed).  

 

 
                                                        (a)  
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                 (b) 

Figure 5. Solutions for case study I. (a) Waldron’s circle dia-

gram: the solutions W1, W2 and W4 (smaller points) can be 

used for driving pivots for the successful design of a four-bar 

linkage. (b) Filemon's construction: shows the chosen moving 

pivot W[4] and the arrangement of the rest moving pivots 

    It was assumed that there were no particular preferences 

of which two of the four solutions were choosen for the de-

sign of the four-bar linkage. The goal was to have a success-

ful design that goes smoothly through the specified task. A 

quick examination of Waldron’s diagram in Figure 5(a) 

shows that a non-branching solution can be obtained by us-

ing moving pivots W4 and W1. Both pivots are away from 

the Waldron bounded region. According to Filemon’s con-

struction (see Figure 5(b)), if W4 is chosen as the driving 

crank, W1 is outside of the Filemon wedged swept area and, 

therefore, can be used as a driven crank. The coordinates of 

the fixed and moving pivots of the chosen solutions are 

shown in Table 2.   

 
Table 2. The fixed and moving pivots used to construct a fully 

operating four-bar linkage 

 
 

The smooth movement of the coupler of this successful de-

sign is shown in Figure 6.   

 

 
Figure 6. The four-bar linkage constructed from (G4, W4) and 

(G1, W1) 

Case study I: One of the solutions for the design of the 

four-bar linkage is in the bounded region. 

 

It was assumed that there was a need to assemble a four-bar 

linkage using the third and fourth [(W3, G3), (W4, G4)] real 

solutions of the synthesis equations for an RR chain. Ac-

cording to Waldron’s three-circle diagram, the chosen mov-

ing pivot, W3, in Figure 5(a) would not work as a possible 

solution since it neither lies outside of the bounded area nor 

at a position where two of the circles overlap. The other 

chosen pivot, W4, was not a problem since it was out of the 

bounded area. The coordinates of the fixed and moving piv-

ots of the chosen solutions are shown in Table 3.   

 
Table 3. The fixed and moving pivots for case study one 

 
 

   Figure 7 shows the movement associated with combining 

the third and fourth solutions, resulting in branching prob-

lems and, therefore, an unsuccessful four-bar linkage design.  

The first of the three specified task positions lies on the first 

branch and the second and third task positions are on the 

second branch. This example shows that the 4R chain can-

not pass smoothly through the given task.  

  

 
Figure 7. The four-bar linkage, constructed from (G3, W3) and 

(G4, W4) cannot pass through the specified task: a failed de-

sign 

 

   To solve the branching problem, equations (12) and (13) 

were applied. Pivot W3 was shifted to remain within Wal-

dron's bounded circle but in an area where two of the circles 

overlap, i.e., from W3= (0.02, 0.25) (shown in Table 3) to 

W3= (0.61, 0.82) (see Table 5). Repositioning the W3 pivot 

at the new desired position resulted in modification of the 

coordinates of the fixed pivot, G3, as well as the coupler 

velocity pole, VP3, in the third position.  The modified cou-

pler velocity pole data in the third position, as well as the 

new data set for the linear velocity in the third position, are 
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given in Table 4. The new coordinates of the moving pivot, 

W3, are shown in Table 5.  

 
Table 4. The modified velocity set for case study one 

 
 
Table 5. The modified coordinates for the moving pivot W3 

and the fixed pivot G3 in the third position 

 
 
A fully operating 4R linkage is assembled in Figure 8, cor-

responding to the modified velocity. It can be seen that the 

chain is able to move smoothly through the given task and 

the path trajectory is tangent to the specified velocities. 

 

 
Figure 8. The modified four-bar linkage design for case study 

one 

 

Case study II:  Driving/driven crank decision for the 

successful four-bar linkage design. 
 

Starting with the data set in Tables 1 and 3, the authors 

wanted to use the third and fourth solutions for constructing 

their four-bar linkage, similar to the first case study. Since 

the third solution yielded a branching problem, the authors 

chose to shift the moving pivot W3 outside of Waldron's 

bounded region, following the same procedure as in the first 

example. The modified velocity is given in Table 7.  

 
Table 6. The modified coordinates of the moving pivot W3 and 

the fixed pivot G3 in the third position 

 
 

Waldron's diagram, the modified coupler velocity pole 

VP3, the new linear velocity in the third position, as well as 

the obtained coordinates for the moving pivot, W3, are giv-

en in Figure 9. 

Table 7. The modified velocity set 

 
 
This time the authors chose to use solution three as a driving 

crank. In order to test the solution, they plotted Filemon’s 

construction, shown in Figure 9(b), to determine which of 

the two cranks (W4, G4) or (W3, G3) should be chosen as 

the driving crank and which as the driven. The coordinates 

obtained for the input and output cranks are shown in Table 

6, where the third solution was used as a driving crank.  

 
       (a) 

 
                     (b) 

Figure 9. The modified solutions for case study II. (a) Wal-

dron’s three-circle diagram. (b) Filemon's construction for 

case-study II 

 

Since W4 is outside of the wedge swept area, the coupling 

of these two solutions yields a fully operational design. The 

new working 4R linkage corresponding to the modified data 

set is assembled in Figure 10.   
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Figure 10. The successful four-bar linkage design for case 

study II 

 

Summary 
  

Specifying velocity constraints in certain task positions 

gives the designer control over the motion between the posi-

tions.  The main contribution of the study was that both 

Filemon’s construction and Waldron’s three-circle diagram 

were found to have direct application in the planar four-bar 

linkage synthesis theory with task positions and velocity 

specifications. The task positions provide the geometric 

features of the position four-bar linkage synthesis, such as 

the pole triangle and Waldron’s circle diagram. The study 

showed how to shift either chosen pivots or the velocity pole 

in one of the positions in order to reshape the coupler 

movement for non-branching solutions. The non-branching 

techniques discussed here can find direct application in the 

design of planar n-bar linkages, providing the designer the 

flexibility of modifying the task specifications as needed 

and, therefore, becoming a powerful tool for the future de-

sign of novel mechanical systems. 
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