

MATH CO-PROCESSOR EFFICIENCY AND IMPROVEMENTS ON A MULTI-CORE MICROCONTROLLER 49

MATH CO-PROCESSOR EFFICIENCY AND IMPROVE-

MENTS ON A MULTI-CORE MICROCONTROLLER

Adam Stienecker, Ohio Northern University; Matthew Lang, Ohio Northern University

Abstract

 Traditionally, a math co-processer is a hardware device

that resides next to a microprocessor or microcontroller in an

electronic device. The math co-processor is there to com-

plete complex and lengthy mathematical processes because

either the main processor is not capable of floating point

math or because such processes require significant pro-

cessing resources that are unavailable on the main processor.

With the rising popularity and falling price of multi-core

microcontrollers such as the Parallax Propeller, the interest

in on-chip math co-processors has increased. This paper

aims to document improvements made to the traditional

methods of math co-processing by increasing the dyadic

form of some functions to triadic up through decadic. The

co-processor resides inside the processor and uses one of the

chip’s cogs, or cores. This assembly language co-processer

can then be used by any programmer of the Parallax Propel-

ler by adding the code to the microcontroller as an object file

that runs completely independent of the user’s main code.

With the increasing abilities of very small, embedded devic-

es, the computational abilities of the processor are becoming

increasingly more important. Product developers are con-

tinually creating products that do more at a faster rate with

lower power and smaller size. The improvements outlined

in this paper that have been made to the standard methods

for math co-processing will aid in doing more with less.

Background

 The Propeller microcontroller by Parallax was designed to

perform multi-core computing in embedded systems with

low power consumption. It consists of eight internal proces-

sers with a set of shared resources including I/O, memory,

and the system clock. Due to this design, the Propeller oper-

ates without interrupts, unlike many other microcontrollers.

This is made up for by the additional processing power of

multiple processing units. In many embedded systems an

interrupt may be assigned to a specific input or set of inputs

associated with an incoming signal. Instead, in the Propeller

multi-core environment, the programmer is able to assign a

core to keep up with the higher bandwidth signals.

 Traditional math co-processors perform various operations

such as add, subtract, multiply, divide, tangent, sine, cosine,

and log functions, etc. The math co-processor is equipped

with data types, registers and instructions, and executes

number processing quickly. It has internal assemblers and

compilers to interpret high-level languages for the user’s

convenience. These co-processors have traditionally been

located external to the microcontroller and connected by

some kind of communication link. Examples include the

Intel 387
TM

DX and the Motorola M68000 devices.

 Some of the functions that a standard co-processor per-

forms are unary, that is, they require only one argument such

as the sine and cosine function. The other major type of

function performed by a standard math co-processor is the

dyadic math operations that include add, subtract, multiply,

and divide. An existing assembly language code for an on-

board math co-processor has been built around this long

standing method [1]. If the user wishes to manipulate more

than two variables, multiple calls to the co-processor are

required. For example, if a math co-processor existed on-

board as a core and it was used to multiply four variables (Y

= A * B * C * D) the following pseudo-code could be used.

Y=CoP.FMul (A, B)

Y=CoP.FMul (Y, C)

Y=CoP.FMul (Y, D)

CoP is the co-processor object name and FMul is the multi-

ply command inside the object. This operation is performed

until the desired number of variables has been manipulated.

This causes significantly more inefficiencies than if the co-

processor could handle triadic and greater functionality. It

was the intent of this study to describe the results of a cus-

tomizable math co-processor capable of unary and dyadic

through decadic functionality operating on a Parallax Propel-

ler multi-core microcontroller [2].

Modifications

 Starting with the program file mentioned earlier, a more

efficient set of functions was created [3]. To begin with, the

functions that were improved were the multiplication and

addition functions as they seemed logical due to their current

dyadic nature and they are more commonly used. To suc-

cessfully multiply triadic variables or more, the user would

have to multiply two variables then take the product of the

dyadic variables, call upon the function again, and multiply

another variable with the product. For reference, the cur-

rently existing functionality for multiply and add operations

was defined as follows.

50 INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & INNOVATION | VOL. 2, NO. 2, FALL/WINTER 2010

 FMul(a,b)= a·b (1)

 FAdd(a,b)= a+b (2)

For test purposes, functions were created that would multi-

ply three to ten variables, depending on the user’s desire.

These functions were implemented in assembly language

and are defined as follows.

 FMul3(a,b,c)=a·b·c (3)

 FMul4(a,b,c,d)=a·b·c·d (4)

 FMul5(a,b,c,d,e)=a·b·c·d·e (5)

 FMul6(a,b,c,d,e,f)=a·b·c·d·e·f (6)

 FMul7(a,b,c,d,e,f,g)=a·b·c·d·e·f·g (7)

 FMul8(a,b,c,d,e,f,g,h)=a·b·c·d·e·f·g·h (8)

 FMul9(a,b,c,d,e,f,g,h,i)=a·b·c·d·e·f·g·h·i (9)

 FMul10(a,b,c,d,e,f,g,h,i,j)=a·b·c·d·e·f·g·h·i·j (10)

Similar code was added to the assembly language co-

processor for addition.

 FAdd3(a,b,c)=a+b+c (11)

 FAdd4(a,b,c,d)=a+b+c+d (12)

 FAdd5(a,b,c,d,e)=a+b+c+d+e (13)

 FAdd6(a,b,c,d,e,f)=a+b+c+d+e+f (14)

 FAdd7(a,b,c,d,e,f,g)=a+b+c+d+e+f+g (15)

 FAdd8(a,b,c,d,e,f,g,h)=a+b+c+d+e+f+g+h (16)

 FAdd9(a,b,c,d,e,f,g,h,i)=a+b+c+d+e+f+g+h+i (17)

 FAdd10(a,b,c,d,e,f,g,h,i,j)=a+b+c+d+e+f+g+h+i+j (18)

 Using the currently existing structure in the assembly lan-

guage program, the above functions were added. However,

instead of duplicating the code for the IEEE-754 multiply

[3], [4] four times for the FMul4 command, the FMul com-

mand was used three times by the FMul4 command to com-

plete the process all within the assembly language object.

While the communication overhead and register setup was

reduced when only one function call to the assembly lan-

guage object was used, a trade-off was made through the use

of the other commands in the object in order to save

memory. Theoretically, the code could be altered to allow

each function a high level of self-reliance at the expense of

memory. This would improve the speed even more but,

along with increasing the memory size, would decrease the

ease of customizability. If further improvements in speed

were required the customizability could be compromised,

although the improvements would be minimal in comparison

to the improvements described herein.

 The functionality was implemented into the Propeller mul-

ti-core microcontroller and the execution times were record-

ed for multiplying and adding a series of real numbers rang-

ing from 0.0085 to 9.1234. These twenty numbers were kept

constant throughout the test. The highest applicable function

was used in all cases. For example, when FAdd10 was be-

ing tested, the code was as follows.

 X = AB.FAdd10(A,B,C,D,E,F,G,H,I,J)

 X = AB.FAdd10(X,K,L,M,N,O,P,Q,R,S)

 X = AB.FAdd(X,T)

 These results, shown in Figures 1 and 2, indicate that the

modified program is more efficient. Efficiency is defined

purely by execution time. For example, in Figure 1, the op-

eration took 808us using the FMul function only, and de-

creased to 575us when FMul3 was used, yielding a 28.752%

improvement.

Figure 1. Multiplication Efficiency Improvements [3]

Figure 2. Addition Efficiency Improvements [3]

Applications

 There are many areas in embedded systems that may re-

quire large amounts of mathematics. Two examples of this

include matrix inversion and the Newton-Raphson iterative

method for systems of equations.

MATH CO-PROCESSOR EFFICIENCY AND IMPROVEMENTS ON A MULTI-CORE MICROCONTROLLER 51

() .11
TqJqq

iii δ−+ +=

 The Newton-Raphson method is a common iterative algo-

rithm and can be used to solve for the inverse kinematics of

a manipulator

[3], [5]. Inverse kinematics is the solution for

the angle of each axis in a robotic manipulator, when given a

Cartesian point in space with respect to a known coordinate

system at the base of the manipulator. For this application

the authors assumed a manipulator with three joints and D-H

parameters as follows:

Table 1. D-H Parameters of an example robot manipulator [5]

The method begins with an initial estimate of the angles of

each axis,

=

3

2

1

θ

θ

θ

q , and the goal point in Cartesian space,

=

Z

Y

X

d

d

d

T . From there, a Jacobian matrix is defined as

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=

∂

∂
=

321

321

321

θθθ

θθθ

θθθ

ZZZ

YYY

XXX

j

i

ddd

ddd

ddd

q

T
J . (19)

The Newton-Raphson equation is then defined as follows:

 (20)

The method continues with an initial guess, q
i
, used to com-

pute the inverse Jacobian matrix and the error in Cartesian

space, δT, given the initial guess angles.

 The Newton-Raphson method was applied to the example

manipulator and was programmed into the microcontroller.

The improved assembly language math co-processor was

customized in the same manner as described above to assist

in solving this iterative algorithm, and its performance was

compared to the original (dyadic only) co-processor code in

Figure 3. This algorithm required 412 iterations for the spe-

cific initial guesses and given Cartesian point. Because the

microcontroller code was quite complicated, the given solu-

tion was validated using a known working implementation

of the algorithm in Matlab.

 As expected, an actual application was not able to make

use of all of the available functions that were added to the

code in the previous section. The following functions were

implemented in the object to incrementally improve the

speed of the application.

 FMul(a,b) and FAdd(a,b) (baseline implementation)

 FMul3(a,b,c) and FAdd(a,b)

 FMul4(a,b,c,d) and FAdd(a,b)

 FMul4(a,b,c,d) and FAdd3(a,b,c)

Figure 3. Newton-Raphson Performance Improvements [7]

 The Newton-Raphson method for a system of equations

was able to make use of the higher-order functions of Add

and Multiply. However, not all higher-level mathematics

done in an embedded system can make use of this. For ex-

ample, a standard matrix inverse algorithm for square matri-

ces, the Gauss-Jordan elimination method [6], would not

benefit from the above improvements. However, if one oth-

er function were created in the math co-processor, the in-

verse matrix would see an improvement in speed. A stand-

ard implementation of the matrix inverse algorithm was im-

plemented such that matrix A (n x n) was concatenated with

the identity matrix of the same size to form [AI], then a se-

ries of row operations could create [A
-1

I]. Once implement-

ed, this algorithm was tested for n = 4 through 10 and com-

pared with results of Matlab to verify accuracy. While the

results were verified, no attempt to ensure numerical stabil-

ity of the algorithm by pivoting was completed [7], rather

the basic inverse matrix algorithm speeds were of main con-

sideration.

Link Length

Joint

 Angles

Link

Twist

Joint

Distances

a1 = 0 mm θ1= ? α1 = 90º d1 = 78 mm

a2 = 292 mm θ2= ? α2 = -90º d2 = 43 mm

a3 = 288 mm θ3= ? α3 = 90º d3 = -29 mm

52 INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & INNOVATION | VOL. 2, NO. 2, FALL/WINTER 2010

),(
),(

),(
),(),(jyA

yyA

yiA
jiAjiA −=

),(),(),(),(jyAyiAjiAjiA −=

 As described above, the algorithm does not benefit from

equations (3) through (18) as it makes use of the row opera-

tion equations, (21) and (22), among others.

 (21)

 (22)

 Because of the form of these equations, (x = a + (-b*c)),

a new function was created in the math co-processer to sup-

port this form in order to decrease the solve time. This im-

plementation was the same as described above, a simple

function that made use of the FMul and FAdd functions

within the object. The algorithm was timed with a standard

implementation of a math co-processor and compared to the

time required when the new function was added. The results

are displayed in Figure 4. Once again, improvement was

defined only by the execution speed. For example, the in-

verse of a 10 x 10 matrix required 436.3ms before imple-

mentation of the added function in the math co-processor

and 385.8ms after the implementation. This represents an

11.57% improvement.

Figure 4. Matrix Inverse Algorithm Performance

Conclusion

 In this paper, the authors presented and demonstrated an

advancement in math co-processing for embedded systems

through the use of two algorithms requiring the use of float-

ing-point math. Because many microcontrollers are not typ-

ically well-suited for floating point math, a math co-

processor has typically been used to supplement the main

processor. What should not be concluded is that a new

standard for math co-processors should be created that in-

cludes higher functionality. Rather, the ability to adapt the

standard implementation of a math co-processor into a cus-

tomizable co-processor is highly desirable in an electronics

world where speed, cost, and size are everything. Increas-

ingly, product developers are required to make them smaller,

cheaper, and faster with little to no design time and costs.

With a multi-core microcontroller, the ability to customize

the functionality of a co-processer with no added design cost

is invaluable. Not only are there no added design costs, but

code changes in the co-processor don’t affect the product

cost, the board layout, or the product size. With a potential

increase in algorithm execution speeds of over 50% and less

cost than a traditional math co-processor, this is an obvious

benefit.

References

[1] Thompson, C., Assembly Language File, "Float32,”

IEEE 754 Compliant 32-Bit Floating Point Math Rou-

tines," Micromega Corporation, Copyright (c) 2006-

2007. Parallax, Inc.

[2] Martin, J. and Lindsay, S., "Parallax Propeller Man-

ual", 2006.

[3] M. Lang and A. Stienecker, "Assembly Language

Math Co-Processor Efficiency Study and Improve-

ments on a Multi-core Microcontroller", ASEE NCS

Conference Proceedings 2010.

[4] Goldberg, D., "What Every Computer Scientist

Should Know About Floating-Point Arithmetic",

Computing Surveys, Association for Computing Ma-

chinery, 1991.

[5] Rankin J. and Hradek R., "The Controls and Manipu-

lator Design of a Robotic Table Tennis Player", ASEE

NCS Conference Proceedings 2009.

[6] Leon, S.J., Linear Algebra with Applications. 5
th

 ed.

New Jersey: Prentice Hall, 1998.

[7] Trefethen, L.N., Numerical Linear Algebra. Philadel-

phia: Society for Industrial and Applied Mathematics,

1997.

Biographies

 ADAM W. STIENECKER teaches electronics and ap-

plied control systems courses at Ohio Northern University in

the Department of Technological Studies. He holds under-

graduate and doctorate degrees in Electrical Engineering

from the University of Toledo in Ohio. His areas of research

include embedded systems and advanced control of mobile

robots. He can be reached at a-stienecker.1@onu.edu.

 MATTHEW LANG recently completed his B.S. in Man-

ufacturing Technology in the Department of Technological

Studies at Ohio Northern University. He is currently seek-

ing employment. He can be reached at

mlang457@gmail.com.

