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Abstract  
 

 Traditionally, a math co-processer is a hardware device 

that resides next to a microprocessor or microcontroller in an 

electronic device.  The math co-processor is there to com-

plete complex and lengthy mathematical processes because 

either the main processor is not capable of floating point 

math or because such processes require significant pro-

cessing resources that are unavailable on the main processor.  

With the rising popularity and falling price of multi-core 

microcontrollers such as the Parallax Propeller, the interest 

in on-chip math co-processors has increased.  This paper 

aims to document improvements made to the traditional 

methods of math co-processing by increasing the dyadic 

form of some functions to triadic up through decadic.  The 

co-processor resides inside the processor and uses one of the 

chip’s cogs, or cores.  This assembly language co-processer 

can then be used by any programmer of the Parallax Propel-

ler by adding the code to the microcontroller as an object file 

that runs completely independent of the user’s main code.  

With the increasing abilities of very small, embedded devic-

es, the computational abilities of the processor are becoming 

increasingly more important.  Product developers are con-

tinually creating products that do more at a faster rate with 

lower power and smaller size.  The improvements outlined 

in this paper that have been made to the standard methods 

for math co-processing will aid in doing more with less. 

 

Background 
 

 The Propeller microcontroller by Parallax was designed to 

perform multi-core computing in embedded systems with 

low power consumption.  It consists of eight internal proces-

sers with a set of shared resources including I/O, memory, 

and the system clock.  Due to this design, the Propeller oper-

ates without interrupts, unlike many other microcontrollers.  

This is made up for by the additional processing power of 

multiple processing units.  In many embedded systems an 

interrupt may be assigned to a specific input or set of inputs 

associated with an incoming signal.  Instead, in the Propeller 

multi-core environment, the programmer is able to assign a 

core to keep up with the higher bandwidth signals. 

 

 Traditional math co-processors perform various operations 

such as add, subtract, multiply, divide, tangent, sine, cosine, 

and log functions, etc. The math co-processor is equipped 

with data types, registers and instructions, and executes 

number processing quickly.  It has internal assemblers and 

compilers to interpret high-level languages for the user’s 

convenience.  These co-processors have traditionally been 

located external to the microcontroller and connected by 

some kind of communication link.  Examples include the 

Intel 387
TM

DX and the Motorola M68000 devices.   

  

 Some of the functions that a standard co-processor per-

forms are unary, that is, they require only one argument such 

as the sine and cosine function.  The other major type of 

function performed by a standard math co-processor is the 

dyadic math operations that include add, subtract, multiply, 

and divide.  An existing assembly language code for an on-

board math co-processor has been built around this long 

standing method [1].  If the user wishes to manipulate more 

than two variables, multiple calls to the co-processor are 

required.  For example, if a math co-processor existed on-

board as a core and it was used to multiply four variables (Y 

= A * B * C * D) the following pseudo-code could be used. 

 

Y=CoP.FMul (A, B) 

Y=CoP.FMul (Y, C) 

Y=CoP.FMul (Y, D) 

 

CoP is the co-processor object name and FMul is the multi-

ply command inside the object.  This operation is performed 

until the desired number of variables has been manipulated.  

This causes significantly more inefficiencies than if the co-

processor could handle triadic and greater functionality.  It 

was the intent of this study to describe the results of a cus-

tomizable math co-processor capable of unary and dyadic 

through decadic functionality operating on a Parallax Propel-

ler multi-core microcontroller [2].  

 

Modifications 
  

 Starting with the program file mentioned earlier, a more 

efficient set of functions was created [3].  To begin with, the 

functions that were improved were the multiplication and 

addition functions as they seemed logical due to their current 

dyadic nature and they are more commonly used.  To suc-

cessfully multiply triadic variables or more, the user would 

have to multiply two variables then take the product of the 

dyadic variables, call upon the function again, and multiply 

another variable with the product.  For reference, the cur-

rently existing functionality for multiply and add operations 

was defined as follows. 
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 FMul(a,b)= a·b      (1) 

 FAdd(a,b)= a+b     (2) 

  

For test purposes, functions were created that would multi-

ply three to ten variables, depending on the user’s desire.  

These functions were implemented in assembly language 

and are defined as follows. 

 

 FMul3(a,b,c)=a·b·c       (3) 

 FMul4(a,b,c,d)=a·b·c·d     (4) 

 FMul5(a,b,c,d,e)=a·b·c·d·e        (5) 

 FMul6(a,b,c,d,e,f)=a·b·c·d·e·f          (6) 

 FMul7(a,b,c,d,e,f,g)=a·b·c·d·e·f·g         (7) 

 FMul8(a,b,c,d,e,f,g,h)=a·b·c·d·e·f·g·h        (8) 

 FMul9(a,b,c,d,e,f,g,h,i)=a·b·c·d·e·f·g·h·i    (9) 

 FMul10(a,b,c,d,e,f,g,h,i,j)=a·b·c·d·e·f·g·h·i·j   (10) 

 

Similar code was added to the assembly language co-

processor for addition.    

 

 FAdd3(a,b,c)=a+b+c     (11) 

 FAdd4(a,b,c,d)=a+b+c+d    (12) 

 FAdd5(a,b,c,d,e)=a+b+c+d+e        (13) 

 FAdd6(a,b,c,d,e,f)=a+b+c+d+e+f    (14) 

 FAdd7(a,b,c,d,e,f,g)=a+b+c+d+e+f+g   (15) 

 FAdd8(a,b,c,d,e,f,g,h)=a+b+c+d+e+f+g+h   (16) 

 FAdd9(a,b,c,d,e,f,g,h,i)=a+b+c+d+e+f+g+h+i  (17) 

 FAdd10(a,b,c,d,e,f,g,h,i,j)=a+b+c+d+e+f+g+h+i+j  (18) 

 

 Using the currently existing structure in the assembly lan-

guage program, the above functions were added.  However, 

instead of duplicating the code for the IEEE-754 multiply
 

[3], [4] four times for the FMul4 command, the FMul com-

mand was used three times by the FMul4 command to com-

plete the process all within the assembly language object.  

While the communication overhead and register setup was 

reduced when only one function call to the assembly lan-

guage object was used, a trade-off was made through the use 

of the other commands in the object in order to save 

memory.  Theoretically, the code could be altered to allow 

each function a high level of self-reliance at the expense of 

memory.  This would improve the speed even more but, 

along with increasing the memory size, would decrease the 

ease of customizability.  If further improvements in speed 

were required the customizability could be compromised, 

although the improvements would be minimal in comparison 

to the improvements described herein. 

  

 The functionality was implemented into the Propeller mul-

ti-core microcontroller and the execution times were record-

ed for multiplying and adding a series of real numbers rang-

ing from 0.0085 to 9.1234.  These twenty numbers were kept 

constant throughout the test.  The highest applicable function 

was used in all cases.  For example, when FAdd10 was be-

ing tested, the code was as follows. 

 

 X = AB.FAdd10(A,B,C,D,E,F,G,H,I,J) 

 X = AB.FAdd10(X,K,L,M,N,O,P,Q,R,S) 

 X = AB.FAdd(X,T) 

 

 These results, shown in Figures 1 and 2, indicate that the 

modified program is more efficient.  Efficiency is defined 

purely by execution time.  For example, in Figure 1, the op-

eration took 808us using the FMul function only, and de-

creased to 575us when FMul3 was used, yielding a 28.752% 

improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Multiplication Efficiency Improvements [3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Addition Efficiency Improvements [3] 

 

Applications 
  

 There are many areas in embedded systems that may re-

quire large amounts of mathematics.  Two examples of this 

include matrix inversion and the Newton-Raphson iterative 

method for systems of equations.   
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 The Newton-Raphson method is a common iterative algo-

rithm and can be used to solve for the inverse kinematics of 

a manipulator
 
[3], [5].  Inverse kinematics is the solution for 

the angle of each axis in a robotic manipulator, when given a 

Cartesian point in space with respect to a known coordinate 

system at the base of the manipulator.  For this application 

the authors assumed a manipulator with three joints and D-H 

parameters as follows: 

 
Table 1. D-H Parameters of an example robot manipulator [5] 

 

The method begins with an initial estimate of the angles of 

each axis,
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The Newton-Raphson equation is then defined as follows: 

 

       (20) 

 

The method continues with an initial guess, q
i
, used to com-

pute the inverse Jacobian matrix and the error in Cartesian 

space, δT, given the initial guess angles. 

  

 The Newton-Raphson method was applied to the example 

manipulator and was programmed into the microcontroller.  

The improved assembly language math co-processor was 

customized in the same manner as described above to assist 

in solving this iterative algorithm, and its performance was 

compared to the original (dyadic only) co-processor code in 

Figure 3.  This algorithm required 412 iterations for the spe-

cific initial guesses and given Cartesian point.  Because the 

microcontroller code was quite complicated, the given solu-

tion was validated using a known working implementation 

of the algorithm in Matlab. 

  

 As expected, an actual application was not able to make 

use of all of the available functions that were added to the 

code in the previous section.  The following functions were 

implemented in the object to incrementally improve the 

speed of the application. 

 

 FMul(a,b) and FAdd(a,b)  (baseline implementation) 

 FMul3(a,b,c) and FAdd(a,b) 

 FMul4(a,b,c,d) and FAdd(a,b) 

 FMul4(a,b,c,d) and FAdd3(a,b,c) 

 

 
 

Figure 3. Newton-Raphson Performance Improvements [7] 
 

 The Newton-Raphson method for a system of equations 

was able to make use of the higher-order functions of Add 

and Multiply.  However, not all higher-level mathematics 

done in an embedded system can make use of this.  For ex-

ample, a standard matrix inverse algorithm for square matri-

ces, the Gauss-Jordan elimination method [6], would not 

benefit from the above improvements.  However, if one oth-

er function were created in the math co-processor, the in-

verse matrix would see an improvement in speed.  A stand-

ard implementation of the matrix inverse algorithm was im-

plemented such that matrix A (n x n) was concatenated with 

the identity matrix of the same size to form [AI], then a se-

ries of row operations could create [A
-1

I].  Once implement-

ed, this algorithm was tested for n = 4 through 10 and com-

pared with results of Matlab to verify accuracy.  While the 

results were verified, no attempt to ensure numerical stabil-

ity of the algorithm by pivoting was completed [7], rather 

the basic inverse matrix algorithm speeds were of main con-

sideration.   

  

Link Length 

Joint 

 Angles 

Link  

Twist 

Joint  

Distances 

a1 = 0 mm θ1= ? α1 = 90º d1 = 78 mm 

a2 = 292 mm θ2= ? α2 = -90º d2 = 43 mm 

a3 = 288 mm θ3= ? α3 = 90º d3 = -29 mm 
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 As described above, the algorithm does not benefit from 

equations (3) through (18) as it makes use of the row opera-

tion equations, (21) and (22), among others. 

       

          (21) 

  

      

          (22) 

 

 Because of the form of these equations, ( x = a + (-b*c) ), 

a new function was created in the math co-processer to sup-

port this form in order to decrease the solve time.  This im-

plementation was the same as described above, a simple 

function that made use of the FMul and FAdd functions 

within the object.  The algorithm was timed with a standard 

implementation of a math co-processor and compared to the 

time required when the new function was added.  The results 

are displayed in Figure 4.  Once again, improvement was 

defined only by the execution speed.  For example, the in-

verse of a 10 x 10 matrix required 436.3ms before imple-

mentation of the added function in the math co-processor 

and 385.8ms after the implementation.  This represents an 

11.57% improvement. 

 

 
 
Figure 4. Matrix Inverse Algorithm Performance  

 

Conclusion 
 

 In this paper, the authors presented and demonstrated an 

advancement in math co-processing for embedded systems 

through the use of two algorithms requiring the use of float-

ing-point math.  Because many microcontrollers are not typ-

ically well-suited for floating point math, a math co-

processor has typically been used to supplement the main 

processor.  What should not be concluded is that a new 

standard for math co-processors should be created that in-

cludes higher functionality.  Rather, the ability to adapt the 

standard implementation of a math co-processor into a cus-

tomizable co-processor is highly desirable in an electronics 

world where speed, cost, and size are everything.  Increas-

ingly, product developers are required to make them smaller, 

cheaper, and faster with little to no design time and costs.  

With a multi-core microcontroller, the ability to customize 

the functionality of a co-processer with no added design cost 

is invaluable.  Not only are there no added design costs, but 

code changes in the co-processor don’t affect the product 

cost, the board layout, or the product size.  With a potential 

increase in algorithm execution speeds of over 50% and less 

cost than a traditional math co-processor, this is an obvious 

benefit.  
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