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Abstract 
 

Engineering technology students often begin their college 

experience with minimal training in technical computing. A 

simple exercise in computing an approximate value of π can 

introduce basic concepts and commonly used software, 

while calculating a familiar number. Several methods of 

approximation are presented here, starting with an intuitive 

geometric approach and progressing to more efficient meth-

ods based on series expansions. Initial presentation of this 

exercise in a math review class for engineering technology 

students was successful. 

 

Background 
 

Perhaps the most universally used mathematical constant, 

π appears in expressions across a wide range of technical 

fields. Every engineering technology student knows that π is 

approximately equal to 3.14 or 22/7. Given a dozen decimal 

places, it is possible to express the circumference of a circle 

1 million kilometers in diameter with an accuracy of 1mm. 

While there is no engineering reason to need more than 

about a dozen decimal places, the numerical value of π is 

currently known to more than a trillion decimal places. 

There are several reasons for this incredible level of preci-

sion. One is that number theorists are looking for patterns in 

the series of digits, though π has been proven to be irrational 

and, thus, cannot terminate in a repeating series of digits no 

matter how long the number. Another more practical use is 

to verify the accuracy of new computers by showing that 

they can correctly calculate π to a large number of digits [1]. 

 

Engineering technology students are generally just told 

that π is the ratio of the circumference of a circle to its di-

ameter and that it has a certain approximate value. Common 

scientific calculators have π programmed to around a dozen 

significant digits and some students even take it upon them-

selves to memorize them. However, is it very uncommon 

for students to be shown where the numerical value of π 

comes from and even more rare for them to do the actual 

calculation. 

 

This situation offers an opportunity to both introduce 

technology students to some basic ideas about technical 

calculations and to remove some of the mystery surrounding 

this universal constant. Fortunately, several means of calcu-

lating π are well within the mathematical abilities of tech-

nology students who are not yet familiar with the basics of 

calculus, though a basic knowledge of calculus allows more 

efficient methods to be used. Many different methods have 

been proposed over the last few thousand years [2], [3]; 
what follows is a description of several representative ap-

proaches in roughly increasing order of sophistication, 

along with sample calculations. 

 

Method of Polygons 
 

Among the first known approximations of π are 25/8 

(3.125) from the Babylonians and 256/81 (approximately 

3.1605) from the Egyptians [4]. Both appear to date from 

around 1900 BC. The first known rigorous estimate was by 

Archimedes (287-212 BC). He showed that π can be ap-

proximated by inscribing and circumscribing regular poly-

gons on a circle, as shown in Figure 1. As the number of 

sides increases, the sum of the lengths of the sides ap-

proaches the circumference of a circle. The inscribed poly-

gon approaches the circumference of the circle from below, 

while the circumscribed polygon approaches from above. 

This method is an important one because it allows calcula-

tion to any accuracy desired by simply increasing the num-

ber of sides of the polygons. 

 

Figure 1. Archimedes’ Method of Inscribed and Circum-

scribed Polygons (Wikipedia Commons. Image is in the public 

domain) 

 

The circumference of a regular polygon with N sides is N 

times the length of the base of one segment, as shown in 

Figure 2. The geometry is slightly different for the inscribed 

and circumscribed triangles, though both are isosceles. For 

simplicity, assume the radius of the circle is 1. 
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Figure 2. Dimensions of Polygon Segments 
 

For the inscribed polygon with N sides, 

 

 

                                                                                           (1) 

 

 

where θ = 360º/N. For the circumscribed polygon, 
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If the radius of the circle is 1, then the circumference is 2π 

and 

 

                                                                                           (3) 

 

 

Of course, calculating an estimate for π depends on the 

ability to calculate sine and tangent functions. Figure 3 

shows how the upper- and lower-bound estimates converge 

as N increases. The average of the two estimates produces a 

more accurate result than either estimate individually. 

 

Before moving to the next method, it is worth noting that 

Equation 3 is true even when N is not an integer. For exam-

ple, choosing N=123.456 gives the estimate 3.141254 ≤ π ≤ 

3.1412271. To go one step further, N does not even have to 

be real. For example, N = 123.456 + 89.0123i gives 

3.141522 + 2.116587i × 10-4  ≤  π  ≤  3.141734 + 4.233687i 

× 10-4. Note that using complex arguments gives complex 

results whose imaginary parts are very small. As the magni-

tude of the complex argument increases, the imaginary part 

of the result approaches zero and the result is a real number. 

This a useful example of how an equation developed from a 

simple, intuitive starting point can be applied more general-

ly than its derivation might suggest. 

 

Figure 3. Convergence of Polygonal Approximations 

 

Summation of Boxes 
 

Another approximate method appears to have been pro-

posed slightly before the development of calculus and will 

look familiar to any student who has seen a graphical expla-

nation of integration [5]. The area of a circle is πr2 and the 

equation describing a circle with a radius of 1 is x2+y2=1. It 

is easy in principle to approximate the area of a quarter cir-

cle by dividing it into vertical boxes (as shown in Figure 4) 

and simply adding up the areas of the boxes. As the number 

of boxes increases, the boxes’ total area approaches the ex-

act area of the quarter circle. This  is essentially the defini-

tion of an integral. 

Figure 4. Summing Rectangles to Approximate Area of Quar-

ter Circle 
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The expression for the area of the quarter circle is 

 

 

                                                                                           (4) 

 

 

Since the radius of our circle is 1, π = 4A. Figure 5 shows 

convergence of this expression compared to Archimedes’ 

method. It clearly produces an accurate result faster and 

does so without the need to calculate trigonometric func-

tions. However, this comes at the price of having to calcu-

late square roots.  

Figure 5. Convergence of Summed Rectangle Estimate 

 

Summation of Segment Lengths 
 

A more sophisticated approach is to sum the length of arc 

segments on the quarter circle as shown in Figure 6. The 

quarter circle can be divided into segments with equal spac-

ing along the horizontal axis (∆x is constant). The length of 

any individual segment is 

 

                                                                                       (5) 

 

 

so the approximate length of the quarter circle is then 

  

 

                                                                                           (6) 

 

 

Since the radius of the circle is 1, ∆x=1/N and xi=i/N. Now, 

this expression can be re-written as  

 

 

 

                                                                                           (7) 

 

 

Figure 6. Defining Lengths of Segments 

 

As N gets larger, this expression converges to π, as shown 

in Figure 7. 

Figure 7. Convergence of Summed Segment Length Method 

 

The summation methods presented in this section and the 

previous approach are clearly precursors to an integral 

method. To complete this line of thought, it makes sense to 

extend the method to a true integral. The length of an infini-

tesimal section of an arc is simply defined using the Pythag-

orean Theorem (Figure 8). 
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Figure 8. Length of an Infinitesimal Arc Segment 
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Since the circumference of the full circle is 2π, the arc 

length of the quarter circle is π/2 and 

 

                                                                                           (9) 

 

 

The methods shown so far require an entirely new calcu-

lation for each increase in N. While this may seem like a 

trivial distinction, it is important when calculating a large 

number of significant figures. A more useful approach 

would be one in which increasing the number of terms in 

the estimate meant simply adding new terms to ones that 

had already been computed. This leads to infinite series 

approximations. 

 

Series Expansion Approximations 
 

The purpose of this exercise is to develop an expression 

that allows calculating approximations to π of arbitrary ac-

curacy. A common method for doing this is a Taylor series 

expansion or its simpler variation, the Maclaurin series ex-

pansion [6]. Many efficient methods of calculating numeri-

cal approximations to π are based on these series. 

 

Most beginning calculus students learn that a Taylor se-

ries can be used to approximate a continuous function as 

long as the function is sufficiently smooth. They may even 

know that scientific calculators use series approximations 

internally to evaluate familiar functions like sin(x) and cos

(x). The general expression for the Taylor series is 

 

 

 

                                                                                     (10) 

 

 

 

where “a” is a constant (the number about which the series 

is expanded). If a = 0, the Taylor series becomes a Maclau-

rin series.  

 

                                                                                         (11) 

 

 

Technology students tend to be more receptive to con-

cepts that can be presented graphically. As an example, the 

Maclaurin series expansion for tan(x) is 

 

                                                                                         (12) 

 

 

Figure 9 shows tan(x) in the range 0.5 ≤ x ≤ 1.5 along 

with increasingly accurate series approximations. It is clear 

that increasing the number of terms in the approximation 

produces approximating functions increasingly close to tan

(x). 

Figure 9. Series Approximations to tan(x) 

 

Being able to approximate a range of expressions with an 

infinite series opens a new class of functions to be used for 

approximating π. Since tan(45º) = tan(π/4) = 1, one of the 

first, and perhaps the most obvious, of these was tan-1(1) = 

π/4. Written as a Taylor series, tan-1(x) is 
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An approximate expression for π = 4tan-1(1) is, thus, 

 

 

                                                                                         (14) 

 

 

Figure 10 shows the convergence of this series. It is 

unique among the series discussed so far in that it alternate-

ly overestimates and underestimates the correct value. More 

important, though, is the fact that the series converges very 

slowly. This problem is well known and there are other se-

ries that converge more quickly. 

Figure 10. Convergence of Maclaurin Series for Arctan 

Approximation 

 

Any change to the process that increases the rate at which 

successive terms decrease in magnitude should increase the 

rate of convergence. One possibility is to use an angle 

smaller than 1 radian so that the magnitude of the xn terms 

in the Maclaurin series decreases much faster. This may 

require a change in the function being considered. Specifi-

cally, sin(π/6) = ½, so 6sin-1(1/2) = π. The Maclaurin series 

expression is 
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Note how quickly this series converges, as shown in Fig-

ure 11. A six-term series yields 3.1415767, about 99.9995% 

of the right answer. Since π is irrational, there is no exact 

numerical value and no way to precisely state the difference 

between the calculated number and the accepted value. For 

our purposes, the “exact” answer is assumed to be the value 

programmed into Mathcad, which is correct to seventeen 

decimal places. 

Figure 11. Convergence of Maclaurin Series Expression for 

6sin-1(1/2) 

 

Finally, let’s revisit the integral expression in Equation 9. 

The integrand can be expressed using a Maclaurin series 

approximation. 
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There are a number of different integration limits that 

could be used, but some converge faster than others. Equa-

tion 9 calculates the circumference of a quarter circle, so the 

range of integration is 0 to 1. Since the integral of Equation 

16 is a summation of terms of the form cxn, the upper inte-

gration boundary affects the rate of convergence. If the up-

per limit of integration is 1, then the each term reduces to 

c×1n = c. However, if the upper limit is less than 1, then the 

magnitude decreases much more quickly as the value of the 

exponent, n, increases.  

 

The constraint is that the upper limit must correspond to 

some rational, preferably integral, multiple of the circumfer-

ence of a circle. Fortunately, an upper integration limit of ½ 

corresponds to an angle of 30° and the resulting arc length is 

1/12 the length of the circumference. The resulting expres-

sion is 
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While this may look like a new expression, a little algebra 

shows that it is identical to Equation 15. It is interesting that 

two completely separate arguments can yield the same se-

ries approximation, a fact that clearly suggests the two start-

ing expressions are related. 

 

More Advanced Methods 
 

More curious students may want to know about the most 

advanced methods of calculating π. As this is written, it is 

now known to approximately 1.24 trillion digits. For such a 

huge calculation, efficiency is critical. There are a number 

of different expressions, but most involve series expansions 

of trigonometric expressions. A particularly efficient ex-

pression was proposed by Machin [3].  

 

 

                                                                                         (18) 

 

 

This is written as a series expression by substituting the 

MacLaurin series approximation for the arctan function. 

 

 

                                                                                         (19) 

 

 

A four-term series using this expression differs from the 

“exact” value by less than one part in 106. 

 

A more recent expression was developed by Takano [7]. 
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A four-term series using this expression differs from the 

“exact” value by less than one part in 1014. 

 

The origin of “Machin-like” formulae lies in complex 

numbers. This is a particularly useful feature, since complex 

numbers seem to be a source of continual confusion among 

engineering technology students. Students were shown how 

to derive one of these formulae by starting with the simple 

expression, (2+i)(3+i) = 5+5i. It is a simple task to present 

this expression graphically in the real-imaginary plane. Pre-

sented graphically in polar form, the two numbers are repre-

sented in Figure 12 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Polar Representation of Complex Numbers 
 

In polar notation, the complex multiplication is 
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5+5i = √50 Ðπ/4, so α+β = π/4 and 

 

 

                                                                                         (22) 

 

 

 

This expression is slightly less efficient than the one in 

Equation 15. However, it leads directly to the other, more 

efficient expressions such as Equation 18. Figure 13 shows 

a comparison of convergence between the arcsin expression 

from Equation 15, Machin’s expression from Equations 18 

and 22. The vertical axis shows the magnitude of the differ-

ence between the N-term series approximation and the value 

of π programmed into Mathcad. 
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Figure 13. Comparison of Convergence for Inverse Trigono-

metric Expressions 

 

Calculation Using Familiar  

Mathematical Tools 
 

In order for the idea of calculating π to be made real to 

engineering technology students, the students need to do the 

calculations themselves and see how the individual steps 

work. While any of the methods presented here could be 

implemented on a scientific calculator, this is a chance to 

use software tools. The examples presented here will use 

Equations 4 and 15. 

 

While not ideally suited to technical calculations, spread-

sheet programs such as Excel can be useful, particularly 

when simple plots are needed. Figure 14 shows a sample 

calculation using the arctan and arcsin series methods. Be-

cause of the great differences in the rates of convergence, it 

makes sense to plot the magnitude of the individual terms in 

each series. The terms of the arcsin series decrease much 

more rapidly than the arctan series. By the 10th term, they 

are about seven orders of magnitude apart. This is a very 

compelling way of showing students graphically how differ-

ences in the formulation of the problem affect how much 

effort it takes to calculate a precise result. 

 

Figure 15 shows a typical calculation using Mathcad. The 

nature of the program allows students to write out the series 

expressions in a clear format. It is easy to plot the conver-

gence of the box summation method directly since the num-

ber of boxes can be specified as a parameter of the function 

being plotted. Additionally, Mathcad includes symbolic 

manipulation tools so that students can develop series ex-

pressions symbolically if they wish. 

Figure 14. Example Calculation using Excel 

 

Student Response 
 

The calculations presented here were used in a mathemat-

ics review class as a learning module. An informal survey of 

students after the end of the class showed several themes in 

the students’ perception of this exercise. The overall re-

sponse from the students was positive and they clearly 

wanted to see this module remain in the syllabus. The first 

theme in the student responses was the clear utility of the 

result. While the mathematical concepts underlying the vari-
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ous calculation methods presented here could be easily pre-

sented in the context of a made-up problem, the central role 

of π in technical calculations clearly created interest among 

the students. 

Figure 15. Example Calculation Using Mathcad 

 

A closely related theme in the comments was that stu-

dents liked knowing what the answer should be when they 

started making their own calculations. In response, I pointed 

out that I could have given them the answer beforehand for 

any problem I had assigned. However, this wasn’t enough 

for them. Their familiarity with the number π appears to be 

important. They all clearly knew what π was and many had 

memorized its value to more decimal places than they 

would ever need, but none of them knew where the numeri-

cal value had come from. Being able to solve this little mys-

tery clearly motivated some of the students. 

 

There were two other comments worth mentioning. One 

was that calculating π presented a clear example in which 

complex numbers were useful and necessary. The other was 

that the idea of accelerating convergence was an example of 

optimization and increasing the efficiency of a process. 
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